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Welcome to the inaugural edition of the Journal of Transportation of the Institute of Transportation 
Engineers. This Journal was conceived to provide the transportation community with the results 
of research in the areas of planning, operations, design, system management and related policy. It 
also provides a venue for academicians and practicing professionals to share research results. All 
papers submitted to the Journal are subject to an extensive peer review process prior to acceptance 
for publication.

We are heartened by the response to our call for papers, as we received close to 40 submissions. We 
express our sincere appreciation to the Senior Editor and the Associate Senior Editor for guiding the 
review process and selecting the four papers that appear in this edition. A group of highly qualified 
Associate Editors read and rated each of the submitted papers. The highly-rated papers that were not 
included in this issue will be considered for future editions. I thank all the authors who responded 
to the call for papers, and encourage them and all others to consider submitting for future editions. 
Please watch for future calls-for-papers.

We will be sharing this and future editions of the Journal of Transportation of the Institute of Transportation 
Engineers with key transportation organizations around the world and we are hopeful that we will be 
able to share papers that reflect international experiences in future editions. ITE’s core purpose is to 
advance transportation knowledge and practices for the benefit of society. This is one more way that ITE 
is facilitating the exchange of ideas to accomplish that purpose.

Robert C. Wunderlich, P.E. (F)
International President of ITE
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  Effective January 2015, the Manual on Uniform Traffic Control Devices (MUTCD) requires 
that a sign meet minimum retroreflectivity standards based on color and sheeting type.1 
Retroreflectivity standards are defined as absolute thresholds; however, a sign may exhibit 
a range of retroreflectivity readings due to measurement uncertainty in sign-face sheeting 
properties, as well as uncertainty associated with the retroreflectometer and operator. ASTM 
E 1709-08 defines procedures for measuring retroreflectivity of traffic signs and notes these 
factors are sources of error, but the MUTCD standard and the literature are silent on how much 
uncertainty one can expect.3

Bias and Uncertainty in Traffic Sign Retroreflectivity
By Stephen M. Remias, Sarah M. L. Hubbard, Eric A. Hulme, E.I., Alexander M. Hainen,  
Grant D. Farnsworth, and Darcy M. Bullock

Abstract
In an effort to provide guidance to agencies on expected uncertainty in readings, this paper 
examines the range of bias and coefficient of variation (COV) of retroreflectivity readings for Type I 
(engineering-grade beaded sheeting) and Type III (high-intensity beaded sheeting) signs in lab and 
field settings. In the lab, retroreflectivity readings were taken on 22 stop signs using three different 
retroreflectometers and four different operators. In the field, retroreflectivity readings were taken for 
87 red, white, and yellow signs.

The median COV for the retroreflectivity readings of all of the signs was 5.6 percent. When different 
calibrated retroreflectometers were compared, median bias of up to 40 cd/lx/m2 was observed. 
Understanding the bias and uncertainty in retroreflectivity readings is important as agencies are developing 
their protocol for compliance with the MUTCD standards on minimum retroreflectivity.4, 5, 10 Finally, in 
response to potential litigation alleging signs failing to meet current standards, it is important to 
recognize that there is some uncertainty associated with retroreflectivity measurements.
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Motivation
The Manual on Uniform Traffic Control Devices (MUTCD) has defined standards for sign retroreflectivity 
(Table 1) that become effective January 2015.1 It is important to understand the expected bias 
and uncertainty of retroreflectivity readings. Currently, the section in ASTM Standard E 1709-08 
on precision and bias of retroreflectivity states, “These data are under development.”3 This paper 
reports on a study to evaluate the measurement uncertainty and bias associated with using a 
retroreflectometer to measure the retroreflectivity of a traffic sign.

Background
The ASTM Standard E 1709-08 provides numerous details on the measurement of retroreflectivity 
using a portable retroreflectometer. The standard includes a procedure for measuring and reporting 
retroreflectivity results and sources of error when measuring the signs.3

The literature is sparse in regards to uncertainty and bias of retroreflectivity measurements. Several 
authors have reported on the high variance in signs’ retroreflectivity observed after signs have been 
deployed in the field for several years, but it is unclear whether this variance is due to different 
environmental effects, operator effects, or equipment effects.6, 7, 8 Perhaps the most relevant paper is a 
pavement marking repeatability study completed by Holzschuher et al. in 2009. That study reported 
on the precision repeatability of a mobile retroreflectometer unit (MRU) for pavement marking 
retroreflectivity and reported a coefficient of variance of 2.4 percent.2 Similar strategies were adopted 
to measure the repeatability of a sign retroreflectometer in this study.

The current MUTCD now has language requiring agencies to meet the minimum retroreflectivity 
standards by January 2015. Although most agencies will likely use a scheduled replacement program 
based on expected sign life and not regularly measure retroreflectivity, it is still important to 
understand the concept of retroreflectivity and recognize the expected uncertainty and bias that 
can be introduced during measurement of retroreflectivity. Understanding typical uncertainty and 
bias is particularly important with respect to potential litigation regarding sign retroreflectivity. 
Consequently, this paper seeks to provide the objective documentation characterizing the expected 
bias and measurement uncertainty an agency might expect to see.

Table 1:  Minimum retroreflectivity standards (adapted from MUTCD Table 2A-3). 

Sign Color 
Retroreflectivity Standard by Sheeting Type 

(cd/lx/m2) Additional Criteria 
I III, IV, VI, VII, VIII, IX, X 

White on Green W* 
G ≥ 7  

W ≥ 120  
G ≥ 15  Ground-Mounted 

Black on White B = 0 
W ≥ 50  - 

Black on Yellow B = 0 
Y* 

B = 0 
Y ≥ 75  

Text and fine symbols 
measuring less than 48 inches 

White on Red W ≥ 35  
R ≥ 7  

Minimum contrast ratio  
(White : Red) ≥ 3:1  

*This sheeting type is not to be used for this color. 

 

Table 1: Minimum retroreflectivity standards (adapted from MUTCD Table 2A-3).

Understanding typical uncertainty and bias is particularly important with respect to potential litigation 
regarding sign retroreflectivity. Consequently, this paper seeks to provide the objective documentation 
characterizing the expected bias and measurement uncertainty an agency might expect to see.
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Data Collection 
Procedure
Data collection was performed 
using Type I engineering-grade 
beaded sheeting and Type III 
high-intensity beaded sheet-
ing in a controlled laboratory 
environment as well as sheet-
ing installed in the field (Table 
2). Measurements were taken 
at four predetermined loca-
tions on each sign. These loca-
tions were chosen based on an 
MUTCD recommendation to 
measure in a diagonal pattern, 
focusing on key visibility points 
on a sign.1 Figure 1a shows an 
example of the retroreflectivity 
reading points on a stop sign; 
each type of sign had its own 
reading points distributed in a 
similar manner.

Lab Study

In the lab study, retroreflectiv-
ity measurements were taken 
for 22 stop signs that had been 
removed from service in Rich-
mond, Indiana, USA. These 
stop signs consisted of 11 signs 
of Type I sheeting and eleven signs of Type III sheeting. The Type I lab signs can be seen in Figure 1. Stop 
signs were selected for study because they are one of the most crucial types of sign managed by an agency. 
The 11 Type I stop signs were measured by four different operators (designated O1, O2, O3, O4) using 
three different retroreflectometers (designated R0, R1, R2). R0 was a retroreflectometer manufactured in 
1999; R1 and R2 were identical models manufactured in 2009. Different operators and different retrore-
flectometers were used to determine whether uncertainty or bias in retroreflectivity readings occurred due 
to a change in the operator or measuring equipment.

Field Study

In the field study, retroreflectivity measurements were taken for 87 signs, which varied in sheeting type and 
color as shown in Table 2. The signs for the field study were all located in West Lafayette, Indiana, on or 
near the campus of Purdue University. These signs were measured by four different operators (designated 

a) LS 01
b) LS 02
c) LS 03

d) LS 04
e) LS 05
f ) LS 06

g) LS 07
h) LS 08
 i) LS 09

Figure 1: Type I stop signs (lab).

Table 2: Color and sheeting types of signs used in both the lab and field study.
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O1, O2, O3, O4) using two different retroreflectometers (designated R0, R1). The field data were used to 
provide a representative sampling of different colors and sheeting types commonly found in the field.

Data Analysis
Using the retroreflectivity measurements from both the lab and field studies, calculations were made 
to quantify both bias and uncertainty in the measurements. The lab study was used to evaluate bias 
in the sign measurements because the same signs were measured under tightly controlled conditions 
with different operators and retroreflectometers.

The field study was used to provide a larger dataset that was more representative of the data that an 
agency might collect. The coefficient of variance (COV) was used to compare the uncertainty in all 
of the sign measurements:

COV = 	

This COV normalizes the variance by dividing it by the mean, which makes it an appropriate way to 
compare different sign colors and sheeting types.

Observations on Retroreflectivity Variation

A number of retroreflectivity measurements were taken to explore the uncertainty of measurements 
in the controlled conditions of the lab. Initial comparisons are described below and illustrated in 
Figure 2, Figure 3, and Figure 4:

■■ Three trials by one operator using one reflectometer (shown in Figure 2);

■■ Trials by one operator using three reflectometers (shown in Figure 3); and

■■ Trials by four operators using one reflectometer (shown in Figure 4).

In Figure 2 through Figure 4, only nine of the 11 Type I signs included in the study are shown due 
to space constraints. The MUTCD minimum retroreflectivity standard is represented by the dashed 
line in these figures.

The first comparison (shown in Figure 2) was a true repeatability test, comparing three trials with 
measurements taken under the exact same circumstances: one operator using the same retroreflectometer 
on the same set of signs. Ideally, the uncertainty would be zero and each of these trials would produce 
identical results. Figure 2 illustrates the range of the actual measurements; clearly, there is measurement 
uncertainty even when a single operator uses the same retroreflectometer on three separate trials under 
controlled conditions in the laboratory. The vertical lines for each lab sign (designated LS _ ) and each 
trial (designated T_ ) in Figure 2a show the range of retroreflectivity readings for the background sheeting; 
the vertical lines for each sign in Figure 2b show the range of retroreflectivity readings for the sign legend.

Upon examination, it is possible to discern each of the four readings for each trial. For example, 
inspecting sign LS 07 in Figure 2a, the lowest retroreflectivity reading for the background sheeting 
was observed on trial 1 (T1) at point B3; this reading was between 2 and 4 cd/lx/m2. The highest 
reading for sign LS 07 on trial 1 (T1) was observed at point B1; this reading was approximately 23 cd/
lx/m2. The average reading for trial 1 (T1) was approximately 17 cd/lx/m2. For sign LS 07, the wide 
range of values is attributable to graffiti as illustrated by the photograph of this sign in Figure 1g.

The second comparison (shown in Figure 3) illustrates the measurement uncertainty due to use of 
different equipment, and the third comparison (shown in Figure 4) illustrates the measurement 
uncertainty due to different operators. The uncertainty associated with different operators and 
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b)  Range of observed legend retroreflectivity. 

Figure 2:  Lab retroreflectivity readings for nine signs (LS 01…LS 09)  
with same equipment and operator on three trials (T1, T2, T3). 
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a)  Range of observed background retroreflectivity. 
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Figure 2: Lab retroreflectivity readings for nine signs (LS 01…LS 09) with same 
equipment and operator on three trials (T1, T2, T3).

b) Range of observed legend retroreflectivity.

a) Range of observed background retroreflectivity.
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b)  Range of observed legend retroreflectivity. 

Figure 3:  Lab retroreflectivity readings for nine signs (LS01…LS09) 
with same operator and different equipment (R0, R1,R2). 
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a)  Range of observed background retroreflectivity. 
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Figure 3: Lab retroreflectivity readings for nine signs (LS01…LS09) with same 
operator and different equipment (R0, R1,R2).

b) Range of observed legend retroreflectivity.

a) Range of observed background retroreflectivity.
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b)  Range of observed legend retroreflectivity. 

Figure 4:  Lab retroreflectivity readings for nine signs (LS 01…LS 09)  
for four operators (O1…O4) with same equipment. 
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a)  Range of observed background retroreflectivity. 
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Figure 4: Lab retroreflectivity readings for nine signs (LS 01…LS 09) for four 
operators (O1…O4) with same equipment.

b) Range of observed legend retroreflectivity.

a) Range of observed background retroreflectivity.
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Table 3: Coefficient of variation (%) for lab stop signs.
a) Type I stop signs

b) Type III stop signs
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equipment is similar to the uncertainty associated with one operator but perhaps with some bias 
associated with the reflectometer.

The COV for each lab sign is based on all of the measurements taken. The results are shown in Table 
3a for the Type I signs and in Table 3b for the Type III signs. The first comparison of measurements 
in the lab study, in row i and iv of Table 3a and 3b, shows the COV for one operator using one 
retroreflectometer. This COV for this comparison is based on 12 measurements (one operator on 
three trials with four readings per sign). The uncertainty ranges from a maximum COV of 50.4 for 
LS 07 to a minimum COV of 3.6 for LS 03 for the background of Type I stop signs.

The second comparison of measurements in the lab study, in row ii and v of Table 3a and 3b, shows 
the COV for one operator using three different retroreflectometers. Three retroreflectometers were 
calibrated and used to measure the exact same set of signs. The COV for this comparison is based 
on 12 measurements (one operator with three retroreflectometers with four readings per sign). The 
uncertainty ranges from a maximum COV of 63.5 for LS 07 to a minimum COV of 4.0 for LS 03 
for the background of Type I stop signs. It is not uncommon to see a 6 percent uncertainty in the 
measurements of a sign for this comparison.

The third and final comparison of measurements in the lab study, in rows iii and vi of Table 3a and 
3b, shows the COV for four different operators using the same retroreflectometer. The COV for this 
comparison is based on 16 measurements (four operators with one reflectometer with four readings 
per sign). The measurement uncertainty ranges from a maximum COV of 62.5 for LS 07 to a minimum 
COV of 3.6 for LS 03 for the background of Type I stop signs. Overall, the COV values in Table 3 clearly 
indicate that nontrivial uncertainty should be expected when taking retroreflectivity measurements.

Observations on Reflectometer Bias

It was also desirable to explore the potential bias associated with the reflectometers (R0, R1, R2). 
To assess potential bias of one retroreflectometer to another, the difference between the mean 
retroreflectometer readings was calculated for each sign. To illustrate the bias, histograms were 
developed and are shown in Figure 5 and Figure 6 for Type I and Type III signs, respectively. If 
there were no bias, the histograms in Figure 5 and Figure 6 would be randomly distributed about 0; 
however, this does not appear to be the case, and the figures suggest that at least some bias is present. 
For example, Figure 5 and Figure 6 suggest that retroreflectometer R2 is likely to result in readings 
that are consistently higher than retroreflectometer R0, as evidenced for Type I red background with 
a mode of -1 (Figure 5e), for Type I white legend with a mode of -8 and -12 (Figure 5f), for Type III 
red background with a mode of -3 and -4 (Figure 6e), and Type III white legend with a mode of -45 
(Figure 6f).

A comparison of the bias associated with the reflectometers is illustrated in a cumulative frequency 
diagram (Figure 7). The median bias values have a substantial range, from -40 to 2 cd/lx/m2, and vary 
by sheeting type and color. The Type III sheeting material has a higher bias than Type I sheeting; 
however, this is not surprising because the retroreflectivity values are higher for Type III sheeting. 
Similarly, retroreflectometer R0 has a higher bias than the other retroreflectometers; however, this 
also is not surprising because it is an older unit.
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a) Type I Red Background R0-R1 (cd/lx/m2).
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Figure 5: Lab retroreflectivity bias for type I stop sign measurements with same 
operator using different equipment (R0, R1, R2).

 
b) Type I White Legend R0-R1 (cd/lx/m2). 

0

1

2

3

4

5

6

7

8

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14

Fr
eq

ue
nc

y

a) Type I Red Background R0-R1 (cd/lx/m2). b) Type I White Legend R0-R1 (cd/lx/m2).

 
c) Type I Red Background R1-R2 (cd/lx/m2). 
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d)  Type I White Legend R1-R2 (cd/lx/m2). 
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c) Type I Red Background R1-R2 (cd/lx/m2). d) Type I White Legend R1-R2 (cd/lx/m2).

 
f)  Type I White Legend R0-R2 (cd/lx/m2). 
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Figure 5:  Lab retroreflectivity bias for type I stop sign measurements  
with same operator using different equipment (R0, R1,R2). 

 
e) Type I Red Background R0-R2 (cd/lx/m2). 
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e) Type I Red Background R0-R2 (cd/lx/m2). f) Type I White Legend R0-R2 (cd/lx/m2).
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a) Type III Red Background R0-R1 (cd/lx/m2).
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Figure 6: Lab retroreflectivity bias for type III stop sign measurements with same 
operator using different equipment (R0, R1, R2).

b)  Type III White Legend R0-R1 (cd/lx/m2).
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a) Type III Red Background R0-R1 (cd/lx/m2). b) Type III White Legend R0-R1 (cd/lx/m2).

 
c) Type III Red Background R1-R2 (cd/lx/m2).
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d) Type III White Legend R1-R2 (cd/lx/m2). 
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c) Type III Red Background R1-R2 (cd/lx/m2). d) Type III White Legend R1-R2 (cd/lx/m2).

 
e) Type III Red Background R0-R2 (cd/lx/m2).
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f) Type III White Legend R0-R2 (cd/lx/m2). 
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Figure 6:  Lab retroreflectivity bias for type III stop sign measurements 
with same operator using different equipment (R0, R1,R2). 

e) Type III Red Background R0-R2 (cd/lx/m2). f) Type III White Legend R0-R2 (cd/lx/m2).
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Measurement of Total Coefficient of Variation

In Figure 8 and Figure 9, the sample pool of 56 measurements for each sign are shown for the 
background and legend for Type I and Type III sheeting. These plots display the range of readings 
taken for the same sign. This range is important because if an agency takes a single reading that is at 
the low end of the range, it may incorrectly assume that a sign needs to be replaced for compliance 
with the new MUTCD retroreflectivity standards. A very wide range of measurements is often 
indicative of a sign that has graffiti on it or has otherwise been damaged (Figure 8a, 8b LS07). Signs 
that have had graffiti cleaned off may also exhibit unusually wide ranges in observed retroreflectivity 
as a result of the chemicals that may be used to clean the graffiti off the sign. A wide range typically 
correlates with a large COV, which is shown below each sign in Figure 9.

Field Study

The field data were assessed in a similar manner to the lab data with calculations of the range 
of retroreflectivity measurements for each sign, the COV for each sign, and the bias for each 
retroreflectometer relative to the other reflectometer. The results of the analysis of the field data 
are consistent with the findings in the lab study and suggest that uncertainty and bias should be 
expected when measuring the retroreflectivity of signs. The results suggest that the range and COV 
for retroreflectivity measurements in the field are generally consistent with those in the lab. Both the 
lab data and the field data were pooled to create a histogram of the COV of 161 observations (four 
readings per observation) in Figure 10.

Figure 7: Absolute cumulative frequency diagram for retroreflectometer bias (cd/lx/m2). 

Figure 7:  Absolute cumulative frequency diagram for retroreflectometer bias (cd/lx/m2). 
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Figure 8: Graphical summary of all Type I lab stop signs’ retroreflectivity.
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Figure 9: Graphical summary of all Type III lab stop signs’ retroreflectivity

 
a)  Sign background retroreflectivity. 

0

10

20

30

40

50

60

70

80

90

LS 12 LS 13 LS 14 LS 15 LS 16 LS 17 LS 18 LS 19 LS 20 LS 21 LS 22

C
oe

ffi
ci

en
t o

f R
et

ro
re

fle
ct

iv
ity

, R
a

(c
d/

lx
/m

2 )

Sign LS 12 LS 13 LS 14 LS 15 LS 16 LS 17 LS 18 LS 19 LS 20 LS 21 LS 22
COV 16% 5% 4% 5% 4% 5% 5% 9% 6% 39% 5%

Graffiti
Heavy

InkSoiled

b) Sign legend retroreflectivity.
 

b)  Sign legend retroreflectivity. 
Figure 9:  Graphical summary of all Type III lab stop signs’ retroreflectivity 
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b)  Sign legend retroreflectivity. 

Figure 9:  Graphical summary of all Type III lab stop signs’ retroreflectivity 
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Using a set of 109 traffic signs (161 total readings, including measurements of background sheeting 
and sign legends), four different operators, and three different retroreflectometers, the COV was 
determined for all readings for each individual sign. The study found that 85 percent of the measured 
signs have a COV of less than 15 percent. The callouts on Figure 10a illustrate that signs with COV 
values of greater than 15 percent are typically the result of damages or vandalism. It is reasonable 
to assume that the COV for an individual sign will be between 4 and 15 percent. In this study, an 
expected median COV was determined to be 6.5 percent for all signs as shown in Figure 10b. The 
COV results for both the lab and field measurements were plotted as a CFD, along with a combined 
summary line. The lab and field results closely mirrored each other, varying by less than 2 percent 
COV at the median, showing the similarities of the lab and field signs and measurement techniques.

Conclusions
The text in ASTM Standard E 1709-08 – section 12 on the precision and bias of the retroreflectometer 
states, “These data are under development.”3 Using the data collected in this lab and field study, 
it was determined that there is nontrivial bias and uncertainty observed when measuring the 
retroreflectivity of traffic signs. This is the first study characterizing the bias and uncertainty of 
retroreflectometer measurements for traffic signs.

With Regard to Character Bias

Using a set of 22 stop signs and three different retroreflectometers in a controlled laboratory test, 
the range of median bias was determined for Type I and Type III sheeting for both the legend and 
background (white and red):

■■ Type I background ranged from 1 to 3 cd/lx/m2;

■■ Type III background ranged from 2 to 4 cd/lx/m2;

■■ Type I legend ranged from 3 to 12 cd/lx/m2; and

■■ Type III legend ranged from 15 to 40 cd/lx/m2.

With Regard to Character Variability

Analyzing both the field and laboratory data, it is reasonable to assume that the COV for an 
individual sign will be between 4 and 14 percent. In this study, the median COV was determined to 
be 5.6 percent.

It is important to recognize that there is uncertainty associated with retroreflectivity measurements 
in response to potential litigation alleging signs failing to meet current standards. Further data from 
a broader geographic range should be acquired to confirm this paper’s findings with a larger sample 
and to determine an exact value that can be expected; however, the results of this study present a 
compelling case that bias and uncertainty need to be accurately characterized so that agencies can 
develop guidelines for their target tolerance thresholds.

The COV results for both the lab and field measurements were plotted as a CFD, along with a combined 
summary line. The lab and field results closely mirrored each other, varying by less than 2 percent COV 
at the median, showing the similarities of the lab and field signs and measurement techniques.



JOURNAL OF TRANSPORTATION          17

Acknowledgments
This work was supported by the Indiana Local Technical Assistance Program. The contents of this 
paper reflect the views of the authors, who are responsible for the facts and the accuracy of the 
data presented herein, and do not necessarily reflect the official views or policies of the sponsoring 
organizations. These contents do not constitute a standard, specification, or regulation.

References
1.	 Manual on Uniform Traffic Control Devices for Streets and Highways. 2009 Edition. FHWA, U.S. 

Department of Transportation, Washington, DC, December 2009, pp 30-44.

2.	 Holzschuler, C., Choubane, B., Fletcher, J., Severance, J., and Lee, H.S. Repeatability of Mobile 
Retroreflectometer Unit for Measurement of Pavement Markings. In TRB 2010 Annual Meeting 
CD-ROM, No. 10-1731, pp. 2-16.

3.	 ASTM. E 1790-08: Standard Test Method of Measurement of Retroreflective Signs Using a 
Portable Retroreflectometer at a 0.2 Degree Observation Angle. 2008.

4.	 Rogoff, M. J., A. S. Rodriguez, and M. B. McCarthy. Using Retroreflectivity Measurements to 
Assist in the Development of a Local Traffic Sign Management Program. In ITE Journal, Vol. 75, 
No. 10, ITE, October 2005, pp. 28-32.

5.	 Harris, Elizabeth A., W. Rasdorf, J. E. Hummer, and C. Yeom. Analysis of Traffic Sign Asset 
Management Scenarios. In Transportation Research Record 1993, TRB, National Research Council, 
Washington, DC, 2007, pp. 9-15.

6.	 Nuber, Luke, and D. M. Bullock. Comparison of Observed Retroreflectivity Values with 
Proposed FHWA Minimums. In Transportation Research Record 1794, TRB, National Research 
Council, Washington, DC, 2002, pp. 29-37.

7.	 Bischoff, Austin, and D. M. Bullock. Sign Retroreflectivity Study. Final Report, Report FHWA/
IN/JTRP-2002/22. Indiana Department of Transportation Research Division, West Lafayette,  
IN 2002.

8.	 Immanei, V. P. K., J. E. Hummer, W. J. Rasdorf, E. A. Harris, and C. Yeom. Synthesis of Sign 
Deterioration Rates across the United States. In Journal of Transportation Engineering, Vol. 135, 
No. 3, March 2009, pp. 94-103.

9.	 McGee, H. W. and J. A. Paniati. An Implementation Guide for Minimum Retroreflectivity Requirements 
for Traffic Signs. Report FHWA-RD-97-052. Office of Safety and Traffic Operations R&D, FHWA, 
U.S. Department of Transportation, McLean, VA, April 1998, pp. 39-45.

10.	 Carlson, Paul J., Hawkins Jr., H. Gene, Schertz, Greg F., Mace, Douglas J., and Opiela, Kenneth 
S. Developing Updated Minimum In-Service Retroreflectivity Levels for Traffic Signs. In 
Transportation Research Record 1824, TRB, National Research Council, Washington, DC, 2003, 
pp. 133-143.



18          THE INSTITUTE OF TRANSPORTATION ENGINEERS

STEPHEN M. REMIAS received his BSCE from Michigan State University and is 
currently a doctoral student in the School of Civil Engineering at Purdue University. 
Steve has completed several projects in the area of traffic signal systems, origin-
destination measurement techniques, and airport security wait time measurements. 

SARAH M.L. HUBBARD is a professional engineer with experience in transportation 
planning, traffic engineering, and safety.

 
 

ERIC A. HULME, E.I., recently joined Area Wide Protective as a project manager. He 
received his BSCE from Purdue University and conducted postgraduate research at 
Purdue University in the areas of traffic operations, work zone analysis, and traffic sign 
retroreflectivity. He is a member of ITE.

ALEXANDER M. HAINEN received his BSCE from Michigan Technological University 
and is currently a doctoral student in the School of Civil Engineering at Purdue 
University. Alex has completed several projects in the areas of airport passenger 
studies, measuring techniques for origin-destination studies, and traffic signal systems. 
He is a member of ITE.

GRANT D. FARNSWORTH received his BSCE from Brigham Young University and 
MSCE from Purdue. Grant is currently employed by HNTB as a design engineer. 
Grant has completed several projects in the area of retroreflective management 
programs, special-event traffic planning, and maintenance asset management. 

DARCY M. BULLOCK is a professor of Civil Engineering and serves as the director of 
the Joint Transportation Research Program at Purdue University. Bullock is a registered 
professional engineer in Louisiana and Indiana. He is a member of ITE.



JOURNAL OF TRANSPORTATION          19

The Influence of Underreported Crashes on 
Hotspot Identification
By Aaron Truong, Giovanni Bryden Jr., Wen Cheng, Ph.D. P.E., Xudong Jia, Ph.D., P.E.,  
and Simon Washington, Ph.D.

Abstract
To conduct the evaluation, five groups of data gathered from Arizona Department of Transportation 
(ADOT; USA) over the course of three years are adjusted to account for 15 different assumed levels 
of underreporting. Three identification methods are evaluated: simple ranking (SR), empirical Bayes 
(EB), and full Bayes (FB). Various threshold levels for establishing hotspots are explored. Finally, two 
evaluation criteria are compared across hotspot identification (HSID) methods.

The results illustrate that the identification bias—the ability to correctly identify at risk sites—
underreporting is influenced by the degree of underreporting. Comparatively speaking, crash 
underreporting has the largest influence on the FB method and the least influence on the SR 
method. Additionally, the impact is positively related to the percentage of the underreported 
property damage only (PDO) crashes and inversely related to the percentage of the underreported 
injury crashes. This finding is significant because it reveals that, despite PDO crashes being least 
severe and costly, they have the most significant influence on the accuracy of HSID.

  Hotspot identification (HSID) plays a significant role in improving the safety of transportation 
networks. Numerous HSID methods have been proposed, developed, and evaluated in the literature. 
The vast majority of HSID methods reported and evaluated in the literature assume that crash data 
are complete, reliable, and accurate. Crash underreporting, however, has long been recognized as a 
threat to the accuracy and completeness of historical traffic crash records. As a natural continuation 
of prior studies, this paper evaluates the influence that underreported crashes exert on HSID methods.
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Background
The identification of hotspots, sites with promise, blackspots, or accident-prone locations is an 
important task in road and traffic safety that seeks to screen potentially hazardous locations in a 
roadway network for further improvement. The importance of this task has long been recognized 
and, as a result, numerous HSID methods have been developed and proposed to better assist traffic 
safety engineers in correctly locating potentially problematic locations. Although methods vary in 
terms of analytical mechanics, underlying assumptions, and hazard indicator selection, most of 
them rely on the accuracy and completeness of historical traffic crash records. The evaluation of such 
methods to date, moreover, has assumed that crash records are complete. Importantly, as noted by 
Ogden, crash data are usually subject to various limitations including coding errors, location errors, 
missing data, discontinuities of measuring devices or techniques, delay of crash record-updating, and 
many others.1 An obvious unanswered question is whether and to what extent data underreporting 
affects the accuracy of HSID methods.

Of particular interest here is incomplete reporting of road crashes, which has been recognized in 
many countries as a significant problem for road safety evaluation and policy making.2–4 Due to its 
significant impact on safety studies, there is a substantial amount of literature dedicated to the study 
of this issue. Hauer and Hakkert conducted a review of 18 different studies.5 By comparing police-
reported crashes and crash cases reported to local hospitals, insurance companies, and garages, the 
authors reported considerable variability in the degree of nonreporting. According to their study, 
approximately 95 percent of fatalities were reported, while 20 percent of injuries that required 
hospitalization and half of all injuries sustained in motor vehicle crashes were not to be found in 
official statistics. They concluded that the accuracy with which road safety can be measured depends 
on the proportion of accidents reported and on the accuracy with which this proportion is known. 
Taking into account differences in the definitions of reportable accidents, reporting levels, and 
data sources used, Elvik and Mysen carried out a meta-analysis of road accident reporting studies 
conducted in 13 different countries.6 They found that the mean reporting levels for fatal injuries, 
serious injuries (admitted to hospital), slight injuries (treated as outpatients), and very slight injuries 
(treated outside hospital) to be 95 percent, 70 percent, 25 percent, and 10 percent, respectively. 
Reporting was highest for car occupants and lowest for cyclists. A recent study documenting the 
seriousness of underreporting was conducted by Blincoe et al.7 Based on several data sources, 
including the Fatality Analysis Reporting System (FARS), the Crashworthiness Data System (CDS), 
the General Estimates System (GES), the National Automotive Sampling System (NASS), and the 
National Health Interview Survey (NHIS), the authors estimated that in the year 2000, 21 percent 
of injury crashes and half of PDO crashes were not reported, whereas virtually 100 percent of fatal 
crashes were reported.

These past studies demonstrate that underreported crashes constitute a sizeable portion of motor 
vehicle crash populations that occur. While idealistically, all crashes will be identified and reported 
to police, the safety community must recognize that underreporting is a reality we must confront 
and account for in safety management practices. As found by Hauer and Hakkert, the probability 
that a crash is reported depends on a series of factors, including severity of the outcome, the age of 
the victim, the number of vehicles involved, and so on.5 For example, crash nonreporting sometimes 
occurs when the at-fault injured party does not wish to involve police due to concerns about legal 
repercussions. Sometimes drivers are unaware that they are required to file a police report.8 In order 
to reduce the administrative costs associated with crashes, jurisdictions on occasion raise crash 
reporting thresholds, which increases the proportion of nonreported crashes. A study of reporting 
thresholds in multiple states by Zegeer et al. found that the use of a tow-away reporting threshold 
would eliminate nearly half of the available crash data (48.3 percent).9 In summary, given that not 
all crashes are reportable and not all reportable crashes are reported, it is imperative to estimate the 
impact of the underreporting of crashes in HSID methods.
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There is relatively little research conducted to account for the impact of crash underreporting on 
HSID methods and modeling. A recent study conducted by Yamamoto et al. examined the effects of 
severity underreporting on model parameter estimates.10 Through the use of both sequential binary 
probit and ordered-response probit models, mean parameter bias due to underreporting was found 
to be significant. Oh et al. revealed that underreporting of PDO crashes has significant influence on 
the accuracy of crash frequency models compared to weighted frequency models, accounting for 
crash severity.11

Considering that HSID methods rely on reported crashes, there is an underreporting need to 
examine the potential bias in HSID methods that may result. Hence, as a natural continuation of 
the study by Yamamoto et al., the main objective of this paper is to assess the crash underreporting 
influences in HSID methods under a variety of assumptions. This paper features a number of 
important differences and unique contributions. First, three identification methods are evaluated: 
simple ranking (SR), empirical Bayes (EB), and full Bayes (FB). Second, various assumed levels of 
crash underreporting are examined. Third, crash data from five different types of roadway sections 
are utilized. Finally, two evaluation criteria are used to compare methods.

The remainder of this paper first describes the HSID methods compared in the analysis. The details 
of the evaluation experiment consisting of the data used, assumed levels of underreporting, and 
evaluation criteria employed are then provided. Presented next are the results of the evaluation, 
followed by conclusions and recommendations.

HSID Method Used in Comparison
Numerous HSID methods have been proposed and developed. Some methods are based on accident 
counts or frequencies,12 some rely on accident rates,13–16 and others adopt the joint use of accident 
frequency and rate to flag hazardous locations.17 Instead of using overall accident counts at sites, 
some researchers have suggested using accident reduction potential (ARP) to identify sites with 
promise.18–21 The ARP method is based on the assumption that only “excess” accidents over those 
expected from similar sites can be prevented by applying appropriate treatments, and thus it is argued 
that the potential for reduction is a superior method for identifying sites with promise. Again, for 
purposes here, three HSID methods based on crash counts are used: simple ranking (SR), empirical 
Bayes (EB), and full Bayes (FB). The details of each method are now described.

The SR method is one of the most common HSID methods in practice. The reason for its popularity 
is due to its simplicity. To apply the SR method, a set of roadway locations or sections is ranked in 
descending order of crash frequency. The top-ranked sites are then identified as potentially unsafe 
or hazardous sites for further engineering investigations. The number of top-ranked sites in the list 
that will be treated depends on the availability of funding resources to audit and possibly remediate 
the sites. Although the SR method has been widely applied by various agencies, it has one major 
disadvantage in that it is subject to regression to the mean (RTM) bias, a problem caused by random 
variations in crash count during the observation period resulting in diminished identification 
accuracy. In addition, it ignores traffic volumes or exposure and so favors the identification of sites 
with relatively low traffic volumes. In practice this second limitation is mitigated by using traffic 
volume categories to group sites for within-group comparisons.

To correct for RTM bias associated with typical SR methods, researchers have proposed using EB 
techniques.22, 23–29 This method rests on several assumptions: Crash occurrence at a given location 

The SR method is one of the most common HSID methods in practice. The reason for its 
popularity is due to its simplicity. To apply the SR method, a set of roadway locations or 
sections is ranked in descending order of crash frequency. 
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obeys the Poisson probability law, while the probability distribution of the expected safety of the 
population of sites is approximately gamma distributed. In addition, it combines two clues as to 
the expected safety performance of a site—its crash history and the safety performance of similar 
sites. On the basis of these assumptions, the probability that a site has a random number of crashes 
is approximated by the negative binomial (NB) probability distribution. With the EB method 
gradually becoming the standard of professional practice, Hauer et al. provided a detailed tutorial 
on EB, which features a series of examples.30

In the EB method, the expected safety of a site λi is expressed as follows:

(1–w) xi 	 (1)

where w is a weighting factor, E[λ] is the expected safety of a reference population, and xi is the observed 
count history for site i. The w (weighting factor) can be calculated through the following equation:

w = E[λ]/{E[λ] + VAR[λ]} 	 (2)

where VAR[λ] is the corresponding variance of the expected safety of a reference population. If a 
safety performance function (SPF) for the reference population that relates crashes to covariates can 
be developed, w can be rewritten as follows:29

	 (3)

where µ is expected number of accidents/km-year on similar segments or accidents/year expected 
on similar intersections, Y is the number of years of accident count data used, and  is the 
overdispersion parameter, which is a constant for the SPF and is derived during the regression 
calibration process.

A full Bayesian approach is an alternative method that rests upon Bayes’ theorem. The 
fundamental difference between the EB and FB methods is that the former uses a point estimate 
for the expected safety performance of similar sites (µ in Equation 3), whereas the latter makes 
use of the entire distribution of safety performances of similar sites. Like the EB method, the 
FB method has also enjoyed wide applications in safety analysis,34 especially with the availability 
of the software package WinBUGS.35 Even though numerous studies have illustrated favorable 
results yielded by the EB method,36–39 some researchers have also noticed the limitations 
associated with the EB approach.40, 41 In EB analysis, an SPF needs to be calibrated based on sites 
with similar traits. Researchers have argued that in some cases limited reference samples can 
significantly affect the validity of the analysis results using the EB method. Another criticism 
is leveled on the EB’s inadequate capability to explicitly account for the “uncertainty” of model 
parameter coefficients. Once the SPF is developed, all the model parameters and coefficients are 
treated as constant values and then are incorporated into the point estimates of the long-term 
safety of candidate sites. Through empirical analyses and/or comparisons, a set of studies reveals 
the potential advantages of the FB approach relative to the EB one: its capability to seamlessly 
integrate prior information and all available data into a posterior distribution (rather than 
point estimates), its capability to provide more valid safety estimates in smaller data samples, 
and its capability to allow more complicated model specifications.40–44 In addition to the normal 
Poisson-Gamma distribution, the FB models are also capable of accommodating the Poisson-
Lognormal distribution and various hierarchical Poisson distributions that can address the 
serial and spatial correlations among the sites.

For purposes here, to enable straightforward comparison of the evaluation results of alternate 
methods and to clearly identify the impacts of the underreporting of crashes, the FB estimation 
process employs the standard Poisson-Gamma (NB) distribution, which is consistent with the 
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assumptions of the EB method. Alternative FB specifications, not examined here, are discussed in 
various other sources.40, 41, 45 The FB Poisson-Gamma model is usually expressed as follows:

yit|λ it~Poisson (εi λ it)	 (4)

In(λ it) = X'itβ	
(5)

εi~Gamma (α, )	 (6)

where i is the site index, t is the time period index, y is the recorded crash number, λ is the expected 
crash number, X' is the matrix of risk factors,  is the vector of model parameters,  is the random 
effects, and  is the hyper-parameter of the model.

Description of Study
The levels of crash underreporting, data description, modeling results, and the selection of evaluation 
criteria are presented in this section.

Determination of the Levels of Crash Underreporting

As discussed previously, levels of crash underreporting are dependent on a multitude of influential 
factors. As shown in previous studies, crashes of low severity generally are reported less often than 
more severe crashes. Estimates of reporting for fatal crashes tend to exhibit the least variance, with 
virtually all incidents reported. In contrast, reporting estimates for PDO crashes vary considerably. 
Based on the study by Elvik and Mysen, there is substantial variability in the degree of underreporting 
among different countries.6 In recognition of the difficulty of evaluating the full range of crash 
underreporting found in various countries, this paper focuses on the range of crash underreporting 
documented in the United States. Specifically, the findings of the U.S. DOT study performed by 
Blincoe et al.7 are used as the basic building blocks of the study: 0 percent of fatal crashes, 21 percent 
of injury crashes, and 50 percent of PDO crashes not reported. It is important to note that these are 
national estimates and as such state and local agencies might experience different underreporting 
conditions that vary as a function of factors described previously. To capture variability that might 
be observed in practice, multiple (15) levels of crash underreporting are utilized in this evaluation. 
The 15 experimental conditions are shown in Figure 1.

The underreporting levels shown in Figure 1 are meant to reflect a realistic range of crash 
underreporting across the United States, with percentages ranging from 10 percent to 60 percent 
for underreported PDO crashes and from 10 percent to 50 percent for underreported PDO crashes.

Figure 1: Levels of underreporting of injury crashes and PDO crashes.

Levels of underreporting: (percent of underreported injury crashes, percent of underreported PDO crashes)

60 percent PDO underreporting: (10 percent, 60 percent); (20 percent, 60 percent);  
(30 percent, 60 percent); (40 percent, 60 percent); (50 percent, 60 percent)

50 percent PDO underreporting: (10 percent, 50 percent); (20 percent, 50 percent);  
(30 percent, 50 percent); (40 percent, 50 percent)

40 percent PDO underreporting: (10 percent, 40 percent); (20 percent, 40 percent); (30 percent, 40 percent)

30 percent PDO underreporting: (10 percent, 30 percent); (20 percent, 30 percent)

20 percent PDO underreporting: (10 percent, 20 percent)
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The selected crash underreporting levels cover generally assumed conditions and are vulnerable to 
several limitations. First, the limits of the percentage of underreported PDO and injury crashes are 
somewhat arbitrary, and other underreported percentages are possible. Second, for both PDO and 
injury crashes, the percentage values increase by an interval of 10 percent. A smaller percentage increase 
(e.g., 5 percent) might lead to different results, and linear interpolation may not be appropriate. 
Third, injury crashes typically include various severity levels such as minor injury, moderate injury, 
and so forth. However, this study uses only one percentage to represent the overall underreporting 
condition of various injury severity levels. It is expected that the employment of different percentage 
values for different injury severity levels would yield more accurate results.

Data Description and Model Results

Three-years of crash data (2000–2002) of five functional classifications of rural roadway sections 
were obtained from the Arizona DOT for HSID analysis and underreporting impact assessment. The 
data consist of both highway and accident data. The highway data include information on pavement 
type, speed limit, section length, and so on. The crash data include detailed crash information, such 
as crash locations, crash collision type, crash severity, and so forth. Table 1 shows the statistics for 
roads of various functional classifications. The one potential disadvantage is that the sample size for 
minor collector road classification is relatively small.

 The data shown in Table 1 represent the original crash data in the study. For the purpose of evaluating 
crash underreporting impacts on HSID methods, 15 new datasets were created for each functional 
classification of roadway based on the 15 different levels of crash underreporting discussed previously. 
The process of creating new crash data is straightforward. Assume one road section has three fatal 
crashes, 10 injury crashes, and 20 PDO crashes. If the underreported percentage for injury and PDO 
are 30 percent and 40 percent, the new crash number of different severities for the site would be 3, 13 
(=10x130 percent), and 28 (=20x140 percent), respectively. The same adjustment process is applied 
for each site of the same classification. Overall, based on the original five datasets, there are 75 new 
datasets created with underreported crashes taken into consideration.

As discussed previously, safety performance functions are required when the EB method is used to 
identify the hotspots. Considering that the level of service and design standards vary significantly 
among various functional classifications of roadway, the SPFs were developed for each of the 80 
datasets (five original ones plus 75 new sets). Due to overdispersion of crashes observed on various 
classifications of road segments, a negative binomial regression model was utilized. The model 
functional form used for the five SPFs is given as:

	 (7)

where i is the expected safety of a site, SL, and is the independent variable representing the road 
section length and α, β, and  are estimated parameters. It should be noted that SL is never zero and 

Table 1: Statistics for rural roads of various functional classifications.

Functional 
Classification Description

Number of 
Sections

Length 
(km)

Crashes 
(2000–2002)

Average 
AADT

1 Principal arterial-interstate 403 996.113 8122 23810

2 Principal arterial-others 441 1115.128 7012 7603

3 Minor arterial 436 1132.092 5261 5483

4 Major collector 628 1856.064 5285 2637

5 Minor collector 100 365.4 416 684
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so it is not technically problematic to have a non-zero prediction for the case when SL=0. Hence, the 
model form including an intercept is used to develop the SPFs.

Two measures were used to assess the goodness of fit of such models: ρ2 statistic and Akaike’s 
information criterion (AIC). The ρ2 statistic is a statistical test specifically designed to assess the 
goodness of fit of the logistic regression model. It is used in a similar manner as R2 in linear regression 
analysis and is calculated as

	 (8)

where L( ) is the value of the log likelihood function when all parameter are zero, L(0) is the value of 
the log likelihood function at its maximum, and K is the degree of freedom.

AIC is another effective measure of the goodness of fit of an estimated statistical model. It suggests 
that the better fitting model will yield smaller AIC values. In a general case, AIC is expressed as:

	 (9)

where k is the number of parameters in statistical model and L is the maximized value of the 
likelihood function for the estimated model.

For illustration purposes, Table 2 shows a summary of SPFs calibrated for the five original 
functional classifications of road sections including estimated parameter values, the t-statistics for 
all independent variables, dispersion parameters, and measures of goodness of fit. The table reveals 
that all SPFs reveal good statistical fit, and also signs of all the estimated coefficients agree with 
expectations. All the independent variables are significant with 95 percent confidence.

As was done for the EB method, 80 FB Poisson-Gamma models were also calibrated across the 
datasets. The FB analyses were performed via the software package WinBUGS, which uses MCMC 
algorithm.45 To reflect the lack of strong information of the values of various parameters and 
coefficients, prior distribution for all the regression coefficients (β) were assumed N (0, 103), and 
dispersion parameter α was assumed gamma (0.001, 0.001). As previously, the results of the five 
models for original datasets are shown in Table 3 for the FB models.

Table 2: Summary of safety performance function model results for the EB method.

Functional 
Classification

Estimated Parameters       Goodness of Fit

Intercept SL Ln(AADT) Dispersion ρ2 AIC

1 -8.38373(-10.585) 0.27171 
(-16.477)

0.93809 
(12.208)

3.8883 0.4 1821

2 -3.12899(-4.899) 0.18884 
(13.653)

0.47595 
(6.775)

2.9287 0.36 1751

3 -4.30404(-8.215) 0.20146 
(13.010)

0.61753 
(10.514)

3.7999 0.36 1476

4 -1.9286(-4.796) 0.14255 
(12.177)

0.36392 
(7.299)

2.9555 0.32 1675

5 0.045(1.221) 0.059 
(3.468)

0.073 
(4.968)

2.9978 0.33 1465

Notes: SL is the variable of road section length (km); Ln (AADT) is the logarithm transformation on variable AADT. 
Values shown in parentheses represent t-statistic values associated with various independent variable coefficients.
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Evaluation Criteria

The selection of appropriate evaluation criteria plays a significant role in identifying the effects of 
crash underreporting. Compared with the large number of studies focused on the development of 
various HSID methods, considerably less research has been dedicated to devising the evaluation 
criteria for comparing the performance of various methods. Hauer and Persaud proposed the use of 
false identifications, consisting of false negatives and false positives, to measure the performances 
of various methods for HSID.47 Based on these two statistics, Elvik presented two diagnostic criteria 
including sensitivity and specificity.48 Subsequently Cheng and Washington developed four new 
evaluation criteria containing the Site Consistency Test, the Method Consistency Test, the Total 
Rank Differences Test, and the Poisson Mean Differences Test.39

In this study the three HSID methods were applied to both original crash datasets and new adjusted 
datasets. The influences of crash underreporting on HSID were determined through the examination 
and comparison of the identified locations. Assessment criteria from a prior study by Cheng and 
Washington—the Site Consistency Test and the Total Rank Differences Test—were chosen as the 
basis to examine the potential negative effects of underreporting. For improved illustration, the 
Site Consistency Test was slightly modified to the Site Inconsistency Test, which is able to reveal 
the number of different sites identified based on unadjusted and adjusted crash data, respectively. 
To facilitate the understanding of the mechanics of the tests and the effects of underreporting, a 
sample of 30 road sections from Functional Classification 1 is presented in Table 4. In addition to 
the original reported crashes, a new dataset is shown using the underreporting combination of 40 
percent, 60 percent. The sites are ranked as hotspots in terms of crash number. In this example only 
the SR method is used to identify potential hotspots. For the other two methods, the ranking is 
based on the EB-estimated and FB-estimated safety performances respectively.

Total Rank Difference Test

This test relies on site ranking to evaluate the influence of crash underreporting in hotspot 
identification. The test is conducted by calculating the sum of total rank differences (absolute 
value) of the hazardous road sections identified between the original and each of the new datasets. 

Table 3: Summary of Poisson-Gamma model parameter estimation for the FB method.

Functional 
Classification

Estimated 
Parameters    

Intercept SL Ln(AADT) Dispersion

1 -8.305(-9.037,-7.786) 0.267(0.229,0.295) 0.929(0.881,0.998) 4.022(3.090,5.159)

2 -2.805(-4.043,-2.004) 0.178(0.150,0.207) 0.448(0.362,0.584) 2.986(2.371,3.782)

3 -4.063(-4.641,-3.630) 0.20146(0.163,0.225) 0.585(0.538,0.649) 3.905(2.942,5.257)

4 -1.636(-2.373,-0.857) 0.136(0.112,0.161) 0.321(0.225,0.408) 3.075(2.379,3.916)

5 0.076(-1.653,1.676) 0.054(-0.011,0.116) 0.069(0.168,0.304) 3.085(2.183,4.012)

Notes: SL is the variable of road section length (km); Ln (AADT) is the logarithm transformation on variable 
AADT. Values shown in parentheses represent Bayesian Credible Interval (95%BIC) values associated with 
various independent variable coefficients.
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Table 4: Crash information of the sample of 30 road sections using SR method.

Reported crash data
New data set example 
(40%, 60%) underreporting condition

Ranking Site # Total Crash Ranking Site # Total Crash

1 146 22 1 316 32

2 330 22 2 863 32

3 868 22 3 28 33

4 1627 22 4 868 33

5 247 23 5 1627 33

6 863 23 6 47 33

7 1679 23 7 1679 33

8 47 24 8 643 34

9 218 24 9 247 34

10 643 24 10 56 35

11 649 24 11 649 35

12 56 25 12 277 35

13 277 25 13 218 36

14 57 26 14 57 39

15 202 27 15 1483 39

16 1206 27 16 202 40

17 1483 27 17 1775 40

18 1775 27 18 1206 41

19 144 28 19 764 42

20 764 28 20 144 43

21 69 32 21 653 48

22 493 32 22 69 48

23 954 32 23 493 48

24 653 33 24 954 49

25 221 36 25 1646 54

26 1646 36 26 221 54

27 215 40 27 428 60

28 428 42 28 215 63

29 463 44 29 945 64

30 945 72 30 463 109

Notes: 1. The new dataset is created using the underreporting condition of (40%, 60%) as an example;  
2. Only the total crash numbers are shown in the table for brevity. They are calculated as the sum of crashes of 
different severity levels.
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The smaller is the total rank difference, the less influence underreporting has on HSID—reflecting 
consistent ranking of sites across datasets.

In equation form, this test is given as:

T1j = (ℜ(kj,i ) – ℜ(kj,i +1))	 (10)

where

n	 =  total number of sites being compare

ℜ	=  ranking order of site k in dataset j for method j

α	 =  �threshold of identified high-risk site (e.g., α = 0.05 corresponding with top 5 percent of n sites 
identified as high risk)

j	 =  �HSID method being compared (e.g., j = 1 could be the SR, j = 2 the EB, etc.)

i	 =  �dataset (e.g., i = original dataset, i+1 = adjusted dataset 1, etc.)

To illustrate this test, consider the small sample of data presented in Table 4. The top 10 percent 
sections—Sites 428, 463, and 945, identified by the SR method—possess the 28th, 29th, and 30th 
rankings in the original dataset and 27th, 30th, and 29th rankings in new data. The total ranking 
differences of accident frequency as a result is 3 (|28-27| + |29-30|+|30-29|).

Site Inconsistency Test

While the previous test takes into account the rankings of safety performances of road sections, 
this test relies on the number of sites that are inconsistently identified as potential hotspots 
between the original and underreported datasets, with the intent to evaluate the effects of the crash 
underreporting on HSID. As underreporting increases so does the number of inconsistent sites; the 
test rests on the assumption that a site identified as high risk based on reported crash data should 
also reveal inferior safety performance based on the underreported crash data, if the underreported 
crash number exerts no influence on HSID.

In equation form, this test is given as:

	 (11)

where

k	 =  �ranked site in dataset j for method j

j	 =  �HSID method being compared (e.g., j = 1 could be the SR, j = 2 the EB, etc.)

i	 =  �dataset (e.g., i = original dataset, i+1 = adjusted dataset 1, etc.)

Revisiting the sample in Table 4, if we assume that the top 10 percent of the ranked sites are true 
hotspots, then Sites 428, 463, and 945 would be screened out for further investigation based on 
reported crash data. However, based on the underreported crash data set, Sites 215, 945, and 463 are 
identified as hotspots. Comparing the two HSID results reveals a 33 percent site inconsistency when 
crash underreporting is considered.



JOURNAL OF TRANSPORTATION          29

Underreporting Impact Evaluation Results
Establishing reliable and fair comparisons among the identification results using different datasets 
is paramount. One consideration in this regard is the selection of the threshold level used to establish 
hazardous locations. Two different levels are employed in the evaluations; the top 10 percent and 5 
percent of all sites are identified as potentially hazardous. In practice the threshold level typically 
corresponds with the availability of resources for remediation.

The parameters of this evaluation now include levels of underreporting (15), functional classifications 
of roadway sections (5), and cutoff levels (top 10 percent and 5 percent). Three HSID methods are 
assessed, SR, EB, and FB. The evaluation criteria include the number of inconsistently identified sites 
and total rank differences of identified sites.

The evaluation consisted of the following steps:

■■ Road sections were categorized so that the safety of similar sites could be estimated. In this study 
five functional classifications of road section in the state of Arizona were used;

■■ For each classification of roadway section, 15 new datasets were created to represent the 15 different 
crash underreporting conditions. In total, 75 new datasets with the underreported crashes were 
taken into consideration;

■■ Each of the HSID methods is applied to both the original reported datasets and revised 
“underreported data sets.” Road sections in each dataset are sorted in terms of their hotspot status. 
Specifically, the SR method ranks sites based on the total crash number, whereas the EB and FB 
approaches utilize the EB-estimated and FB-estimated crash numbers, respectively. Both the top 
10 percent and 5 percent of all sites are selected under each method for further investigation;

■■ For each group of roadway sections, the two evaluation tests are conducted to compare the 
identification results of the original dataset and each of the 15 underreported datasets. Each test 
is performed 75 times; and

■■ For each level of crash underreporting, the evaluation results are accumulated for all the five 
classifications of sites under each HSID method. The impacts of the crash underreporting are 
then assessed based on the accumulated results.

It is important to note that when creating the underreported datasets, the sites with no crashes 
in the original crash dataset need to be excluded. Crash numbers for these sites remain the same, 
or 0, after the underreported crashes are considered. Inclusion of these sites in the analysis would 
diminish the accuracy of results. With these sites excluded, the numbers of sites for each functional 
classification of roadway are 352, 333, 310, 355, and 42, respectively. The total number of sites is 
1,392.

The detailed evaluation results are shown in the following subsections.

Total Rank Differences Test Results

Table 5 summarizes the total ranking differences test results. The results are presented with levels of 
crash underreporting being arranged in ascending order.

As shown in Table 5, the total rank differences across various methods and underreporting levels 
are somewhat large in general. In the case of the top 5 percent, the maximum rank differences are 
288, while in the case of the top 10 percent the maximum value reaches 832, representing 5.9 rank 
differences per identified hazardous locations. The relative large values indicate the strong influence 
of crash underreporting on HSID. In addition, under each method, the total ranking differences 
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significantly differ across the underreporting levels. For instance, for the FB method, the summed 
ranked differences range from 228 to 832, whereas the range is from 108 to 808 for the EB method. 
The considerable variability among the rank differences suggests that the impacts on HSID are 
related with the level of underreporting.

Another prominent characteristic illustrated in Table 5 is that the values of total rank differences 
also vary substantially among the alternative HSID methods. In comparison with EB and FB, the SR 
method yields smaller total ranking differences. In some cases, the values of SR could be as low as 
6 to 8 times the values generated by EB and FB, respectively. This is explained by noting that when 
using the naïve ranking method to sort candidate sites, the underreported crash numbers merely 
affect each individual site and its ability to get identified. In contrast, both EB and FB methods rely 
also on the crash statistics of similar locations; hence the adjustment of the crash numbers on other 
sites would to some degree impact the ranking of each individual location and therefore lead to the 
much larger rank differences under the Bayes methods. Interestingly, the table also shows the big 
difference between FB and EB, with the FB method yielding higher total ranking differences in all 
situations. The phenomenon might be explained through one of the differences between the EB 
and FB methods noted by other researchers: With the EB method, once the SPF is developed, all 
the model parameters and coefficients are treated as constant values and then are incorporated into 
the point estimates of the long-term safety of candidate sites. However, the FB method addresses 
all the “uncertainty” via integrating the prior information and all available data into posterior 
distributions. Part of the uncertainty emerging in the crash data adjustment process might lead to 
the total different results between EB and FB methods.

Table 5: Accumulated results of total rank differences test of various methods for 
all classifications of highways.

(INJ%, PDO%)

TOP (5%) TOP (10%)

SR EB FB SR EB FB

(10%,20%) 14 (0.2) 108 (1.5) 228 (3.3) 42 (0.3) 560 (4.0) 752 (5.4)

(10%,30%) 14 (0.2) 149 (2.1) 240 (3.4) 54 (0.4) 703 (5.0) 784 (5.6)

(10%,40%) 29 (0.4) 193 (2.8) 243 (3.5) 108 (0.8) 732 (5.2) 810 (5.8)

(10%,50%) 41 (0.6) 209 (3.0) 279 (4.0) 149 (1.1) 752 (5.4) 819 (5.9)

(10%,60%) 57 (0.8) 216 (3.1) 288 (4.1) 174 (1.2) 808 (5.7) 832 (5.9)

(20%,30%) 14 (0.2) 137 (2.0) 237 (3.4) 38 (0.3) 575 (4.1) 779 (5.6)

(20%,40%) 24 (0.3) 164 (2.3) 242 (3.5) 68 (0.5) 719 (5.1) 790 (5.6)

(20%,50%) 38 (0.5) 200 (2.9) 268 (3.8) 122 (0.9) 731 (5.2) 801 (5.7)

(20%,60%) 44 (0.6) 206 (2.9) 271 (3.9) 140 (1.0) 774 (5.5) 797 (5.7)

(30%,40%) 16 (0.2) 160 (2.3) 237 (3.4) 63 (0.5) 658 (4.7) 770 (5.5)

(30%,50%) 31 (0.4) 190 (2.7) 250 (3.6) 100 (0.7) 673 (4.8) 791 (5.7)

(30%,60%) 37 (0.5) 203 (2.9) 263 (3.8) 115 (0.8) 744 (5.3) 793 (5.7)

(40%,50%) 30 (0.4) 186 (2.7) 245 (3.5) 74 (0.5) 662 (4.7) 789 (5.6)

(40%,60%) 25 (0.4) 205 (2.9) 263 (3.8) 102 (0.7) 703 (5.0) 795 (5.7)

(50%,60%) 32 (0.5) 205 (2.9) 263 (3.8) 86 (0.6) 706 (5.0) 803 (5.7)

Notes: 1. (INJ%, PDO%) represents the percentage of unreported injury and PDO crashes respectively;   
2. The figures in the parentheses represent the average ranking difference per identified site.
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For improved illustration of impacts of different underreporting levels, the same results of Table 5 
are rearranged and shown in Table 6. In Table 6, the underreporting levels for PDO crashes increase 
from the top down for each HSID method, whereas for injury crashes they increase from left to 
right. Table 6 clearly demonstrates that the first underreporting situation (10 percent, 20 percent) 
generates the lowest total ranking differences in all scenarios. However, counterintuitively, the 
15th underreporting condition (50 percent, 60 percent) does not produce the largest value of rank 
differences as we expect, even though it represents the largest underreporting levels in the study. 
The highest rank difference value in fact occurs in the fifth situation (10 percent, 60 percent), which 
represents the highest underreported PDO crashes but lowest underreported injury crashes. Further 
investigation of the table reveals that in general (with very few exceptional cases), the summed ranked 
differences increase with increasing percentage of underreported injury crashes and decrease with 
increasing percentage of underreported PDO crashes Therefore, the influence of underreporting in 
HSID is not proportional to the simultaneous increase of both underreported injured and PDO 
crashes. The potential reason for the trends might be due to the larger proportion of PDO crashes 
for most sites. When compared with injury or fatal crashes, the number of PDO crashes is the major 
contributor of the relatively large number of crashes (especially for top-ranked sites). Therefore, 
when increasing the number of PDO crashes for each site, the ranking of various sites is significantly 
affected. However, with the increase of underreported injury crashes, the major impact of ranking 
due to the underreported PDO crashes are somewhat offset.

Table 6: Accumulated results of total rank differences test of various methods for 
all classifications of highways.

PDO\INJ 10% 20% 30% 40% 50%

Simple Ranking

20% 14 (42) — — — —

30% 14 (54) 13 (38) — — —

40% 29 (108) 24 (68) 16 (63) — —

50% 41 (149) 38 (122) 31 (100) 30 (74) —

60% 57 (174) 44 (140) 37 (115) 25 (102) 32 (86)

Empirical Bayesian 

20% 108 (560) — — — —

30% 149 (703) 137 (575) — — —

40% 193 (732) 164 (719) 160 (658) — —

50% 209 (752) 200 (731) 190 (673) 186 (662) —

60% 216 (808) 206 (774) 203 (744) 205 (703) 205 (706)

Full Bayesian 

20% 228 (752) — — — —

30% 240 (784) 237 (779) — — —

40% 243 (810) 242 (790) 237 (770) — —

50% 279 (819) 268 (801) 250 (791) 245 (789) —

60% 288 (832) 271 (797) 263 (793) 263 (795) 265 (803)

Note: 1. The figures outside the parentheses represent the test results in the case of top 5%;  2. The figures in 
the parentheses represent the test results in the case of top 10%.
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Site Inconsistency Test Results

Tables 7 and 8 provide a summary of the site inconsistency test results. Again, the results in both 
tables are similar. They are presented differently with the intention to better illustrate the trends of 
results in various scenarios. Inspection of Table 7 shows that the maximum site inconsistency is 21, 
representing that 15.3 percent of the sites identified using original and adjusted data are different 
from each other. Both tables illustrate the similar phenomena as found in Tables 5 and 6. Compared 
to EB and FB methods, the SR method generates the least site inconsistency in most cases. As for the 
EB and FB methods, the site inconsistency associated with the latter one is generally larger than the 
EB approach. This indicates the underreported crashes have the largest impact on the FB method, 
whereas the influence on the traditional simple ranking method is least. When comparing the 
influence of underreporting levels on HSID, the underreporting condition (10 percent, 20 percent) 
under the SR method reveals the lowest values. However, the largest site inconsistency value, 21, goes 
to the condition of (10 percent, 60 percent) under the FB method (top 10 percent case). In general, 
the site inconsistency number is positively related with the percentage of the underreported PDO 
crashes and inversely related to the percentage of the underreported injury crashes.

It is important to note that even though similar trends are revealed in Tables 7 and 8 and Tables 
5 and 6, the characteristics in Tables 7 and 8 are not so remarkable as those shown in Tables 5 
and 6. The phenomenon might be due to the difference between the total rank differences and the 
site inconsistency tests. The former one records the shifting of all the relative positions of different 
hotspots, while the latter one merely counts the number of sites crossing a fixed threshold line.

Table 7: Accumulated results of site inconsistency test of various methods for all 
classifications of highways.

(INJ%, PDO%)

TOP (5%) TOP (10%)

SR EB FB SR EB FB

(10%, 20%) 3 (4.3) 7 (10.0) 10 (14.3) 4 (2.9) 8 (5.7) 12 (8.6)

(10%, 30%) 4 (5.7) 8 (11.4) 10 (14.3) 5 (3.6) 10 (7.1) 14 (10.0)

(10%, 40%) 4 (5.7) 8 (11.4) 11 (15.7) 5 (3.6) 11 (7.9) 16 (11.4)

(10%, 50%) 4 (5.7) 9 (12.9) 12 (17.1) 7 (5.0) 11 (7.9) 20 (14.3)

(10%, 60%) 5 (7.1) 9 (12.9) 14 (20.0) 7 (5.0) 13 (9.3) 21 (15.0)

(20%, 30%) 3 (4.3) 7 (10.0) 11 (15.7) 5 (3.6) 10 (7.1) 12 (8.6)

(20%, 40%) 3 (4.3) 8 (11.4) 11 (15.7) 5 (3.6) 10 (7.1) 16 (11.4)

(20%, 50%) 4 (5.7) 8 (11.4) 11 (15.7) 6 (4.3) 11 (7.9) 16 (11.4)

(20%, 60%) 4 (5.7) 8 (11.4) 14 (20.0) 7 (5.0) 11 (7.9) 16 (11.4)

(30%, 40%) 3 (4.3) 6 (8.6) 11 (15.7) 4 (2.9) 8 (5.7) 13 (9.3)

(30%, 50%) 4 (5.7) 6 (8.6) 11 (15.7) 6 (4.3) 9 (6.4) 13 (9.3)

(30%, 60%) 4 (5.7) 7 (10.0) 11 (15.7) 7 (5.0) 9 (6.4) 13 (9.3)

(40%, 50%) 4 (5.7) 5 (7.1) 11 (15.7) 5 (3.6) 8 (5.7) 12 (8.6)

(40%, 60%) 4 (5.7) 7 (10.0) 11 (15.7) 6 (4.3) 8 (5.7) 13 (9.3)

(50%, 60%) 3 (4.3) 6 (8.6) 12 (17.1) 6 (4.3) 8 (5.7) 13 (9.3)

Notes: 1. (INJ%, PDO%) represents the percentage of unreported injury and PDO crashes respectively;  
2. The figures in the parentheses represent the percentage of inconsistent sites of the total identified sites.
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Conclusions and Recommendations
This research is focused on evaluating the impact of crash underreporting on the performance of 
HSID. An experimental evaluation was designed to examine four functional classifications of roadway 
sections, 15 levels of crash underreporting, two hotspot cutoff levels, three HSID methods, and two 
evaluation criteria. The study has yielded some noteworthy insights, leading to important conclusions:

■■ Under both evaluation tests, the results indicate that underreported crashes have the greatest 
impact to the FB method, whereas the influence to the traditional SR method is least significant;

■■ In most cases, the underreporting condition of (10 percent, 20 percent) shows the least impact to 
HSID, whereas the underreporting condition of (10 percent, 60 percent) exhibits the strongest 
influence. In general, the influence is positively related with the percentage of the underreported 
PDO crashes, but inversely related to the percentage of the underreported injury crashes; and

■■ Overall, the identification bias due to crash underreporting may be significant. Specially, under the 
FB method, if 10 percent of injury crashes are underreported and 60 percent of PDO crashes are 
underreported, 20 percent of sites identified as most risky will be incorrect.

Due to the significant impact exhibited by crash underreporting, it is recommended that 
underreported crashes be taken into consideration when conducting HSID to the extent that data 

Table 8: Accumulated results of site inconsistency test of various methods for all 
classifications of highways.

PDO\INJ 10% 20% 30% 40% 50%

Simple Ranking

20% 3 (4) — — — —

30% 4 (5) 3 (5) — — —

40% 4 (5) 3 (5) 3 (4) — —

50% 4 (7) 4 (6) 4 (6) 4 (5) —

60% 5 (7) 4 (7) 4 (7) 4 (6) 3 (6)

Empirical Bayesian 

20% 7 (8) — — — —

30% 8 (10) 7 (10) — — —

40% 8 (11) 8 (10) 6 (8) — —

50% 9 (11) 8 (11) 7 (9) 5 (8) —

60% 9 (13) 8 (11) 7 (9) 7 (8) 6 (8)

Full Bayesian 

20% 10 (12) — — — —

30% 10 (14) 11 (12) — — —

40% 11 (16) 11 (16) 11 (13) — —

50% 12 (20) 11 (16) 11 (13) 11 (12) —

60% 14 (21) 14 (16) 12 (13) 11 (13) 12 (13)

Note: 1. The figures outside the parentheses represent the test results in the case of top 5%;  2. The figures in 
the parentheses represent the test results in the case of top 10%.
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are available. At the very least, and in cases when the extent of crash underreporting is unknown, 
a sensitivity analysis of safety management activities involving modeling and analysis should be 
undertaken to acknowledge the extent of the error introduced by underreporting.

The analysis methods touted as most robust and capable of dealing with regression to the mean 
effects are the most affected by underreported crash data. This presents opposing motivations for 
using or avoiding advanced HSID methods, a quandary that deserves additional attention and 
quantification in future work.

It is hoped that the research findings of this study can further increase awareness among safety 
professionals regarding the potential negative influences of crash underreporting. HSID is not 
the only methodology that is affected, and other safety management analytical techniques may be 
subject to large negative influences as well.

There are limitations of this study worth repeating. First, even though a relative large number of 
different levels of underreporting were applied in the study, other underreported percentages are 
also possible. Second, a range of possible SPFs were not considered, say, ones with only ADT as a 
predictor and others will full complement of predictors. It is unknown how the range of possible 
SPFs might affect the outcomes presented here. Finally, other metrics of performance could be used 
to assess the performance, as described in Cheng and Washington.39
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  As part of Transport Canada’s Gateways and Trade Corridors Initiative, the Directorate of 
Economic Analysis was interested in developing freight performance measurements for goods using 
Canada’s international gateways and traveling along its freight transportation corridors. These 
performance indicators—termed “fluidity” measures—will assist Transport Canada in painting a 
clear picture of system efficiency for its freight-significant corridors. The indicators will ultimately aid 
Transport Canada in identifying to what extent the government of Canada’s policies and investment 
in infrastructure are being leveraged and operated to support trade and economic prosperity.

Evaluating Global Freight Corridor  
Performance for Canada
By William L. Eisele, Ph.D., P.E., Louis-Paul Tardif,  Juan C. Villa,  
David L. Schrank, Ph.D., and Tim Lomax, Ph.D., P.E.

Abstract
Transport Canada contracted with the Texas Transportation Institute (TTI) to develop and apply the 
indicators for measuring freight system performance. Researchers created two “fluidity indicators” 
using an index approach. One indicator captures average conditions (Fluidity Index), while the 
other indicator captures daily variation in travel time (Planning Time Index). Because freight moves 
according to both travel time and delivery requirement schedules, and because travel time varies 
according to mode, the performance measures use a normalizing concept to allow comparisons 
within a mode and across an entire supply chain.

This paper describes the development and application of the measures. The paper includes two 
applications. One application demonstrates how the fluidity measures are computed and presented 
for truck shipments. In the second application, researchers demonstrate the use of the fluidity 
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measures for monitoring freight system performance for an international and multimodal corridor 
from China to Canada.

The measures, application, and findings documented in this paper are valuable for practitioners and 
freight movement stakeholders interested in monitoring freight system efficiency.

Introduction

Global Trade Trends

Over the last few decades, the global economy has changed dramatically. To meet increasing 
consumer demand, China, India, and other Asian nations have become major manufacturing 
centers, producing many of the products consumed around the world. The establishment of the 
North American Free Trade Agreement (NAFTA) and the European Union (EU) has aided in creating 
a more efficient means of transporting goods across international boundaries in both North America 
and Europe. Accordingly, world trade has increased substantially over this same time period.

Canadian International Freight Flows

As the value of international trade on a global scale has grown, so too has the value of imports and 
exports in Canada. In 2008, the World Trade Organization reported that Canadian imports totaled 
more than $418 billion, while exports reached in excess of $456 billion.1

Increasing trans-Pacific trade volumes is one of the reasons why Canada has experienced substantial 
growth in both imports and exports over the last decade. In 2008, China ranked second ($42.6 
billion) and fourth ($10.6 billion) in terms of Canada’s total imports and exports, respectively.1  From 
2001 to 2006, Canada’s exports and imports with China showed an average annual growth rate of 
12 percent and 22 percent, respectively. Between 1996 and 2006, marine exports to China nearly 
tripled to reach $7 billion, while marine imports grew four times their 1996 level to approximately 
$15 billion.2

Cargo volumes have risen substantially over the past decade at all of the major ports on North 
America’s Pacific Coast. The Port of Vancouver, located in British Columbia, is no exception to this 
trend. Over the last 10 years, throughput at the Port of Vancouver has more than doubled. According 
to the American Association of Port Authorities (http://aapa-ports.org/), in 2008 nearly 2.5 million 
20-foot equivalent units (TEUs) passed through the Port of Vancouver.

Taking advantage of increasing trans-Pacific container volumes, the Port of Prince Rupert began 
container operations in 2007. This port, located approximately 480 miles north of the Port of 
Vancouver, is uniquely situated to provide the fastest marine transport times between Asia and 
North America. Container throughput at the Port of Prince Rupert has also risen dramatically since 
container operations began in 2007. In 2009, the Port of Prince Rupert handled more than 265,000 
TEUs, a 46 percent increase over 2008 volumes.3

The Role of Supply Chains

As trans-Pacific trade volumes continue to grow, the role that freight transportation plays in Canada’s 
economy will become more and more important. In 2008, commercial transportation services 
alone accounted for 4.1 percent of Canada’s value-added gross domestic product (GDP).1 Because 
freight transportation is such an integral part of Canada’s economy, it has become necessary for the 
Canadian government to formulate policies and make infrastructure improvements to facilitate the 
seamless movement of goods to and from the country (particularly to and from Asia and Europe) 
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and within the country itself. Additionally, the need to facilitate trade is amplified by the fact that 
ports such as Los Angeles and Long Beach are approaching or exceeding existing capacity, placing 
more strain on North America’s transportation system.

As international trade expands, supply chains become increasingly complex. Because Canada’s 
population is highly concentrated in the provinces of Quebec and Ontario, a good majority of the 
freight entering Canada through its West Coast ports will ultimately need to be distributed to those 
two provinces.

There are two main options for transporting freight from the Port of Vancouver to the Toronto 
metro area: truck and rail. In 2006, 81 percent of loaded imports (approximately 662,000 TEUs) 
entering the Port of Vancouver were transported via railroad to Montreal (Quebec) and Toronto 
(Ontario) metro areas.4 As trans-Pacific trade continues to increase, these numbers will only rise, 
placing even more importance on this freight corridor.

Domestic Canadian Freight Flows

In 2007, an estimated 1.2 billion metric tons of freight were transported within Canada’s geographic 
borders.5 Of that total, approximately 530 million metric tons of freight were moved via truck, 225 
million metric tons were moved via rail, 67.3 million metric tons were moved by water, and 0.5 million 
metric tons were moved via air transport. Pipelines transported an additional 380 metric tons.

Geographically, a large majority of the freight entering or exiting Canada moves through the 
provinces of Ontario, Quebec, and British Columbia. These provinces accounted for approximately 
$443 billion, $117 billion, and $85 billion, respectively, in 2006.

Most of the freight exiting Canada through both Ontario and Quebec is destined to the United 
States. A substantial portion of the trade entering Canada through these two provinces also comes 
from the United States, largely due to the automotive industry in Detroit, Michigan. Because the 
province of British Columbia is the third-largest province for international trade, and the imports 
and exports are distributed much more evenly between U.S. and non-U.S. trading partners, this 
paper focuses on applying the indicators to freight moving through British Columbia.

Basic Concepts of the Fluidity Indicators
As part of Transport Canada’s Gateways and Trade Corridors Initiative, the Directorate of 
Economic Analysis was interested in developing freight performance measurements for goods 
using Canada’s international gateways and traveling along its freight transportation corridors. 
The primary objective of the research described here was to develop performance indicators to 
assist Transport Canada in painting a clear picture of freight system efficiency for its freight-
significant corridors without compromising the sensitive nature of private industry data.

These indicators will ultimately aid Transport Canada in identifying to what extent the government 
of Canada’s policies and investment in infrastructure are being leveraged and operated to support 
trade and economic prosperity. The measures should also be relevant to private sector operators 
and their investment and operating decisions. The idea behind this initiative is that if one cannot 
systematically measure the efficiency of Canada’s supply chain system, it cannot be improved. This 
proactive approach is designed to stay ahead of the curve in a world where business practices change 
at an alarmingly fast rate.

Understanding the economic impact of freight transportation on Canada’s economy, Transport 
Canada gathers a large amount of detailed freight transportation data on a regular basis. Researchers 
applied these data to create the Fluidity Index and Planning Time Index described in this paper. 
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Conceptually, the Fluidity Index and Planning Time Index will serve as a gauge that measures the 
overall efficiency of Canada’s transportation system at a corridor level. Specific objectives of the 
measures include the following:

■■ Providing transparent reliability information pertaining to every one of Canada’s freight-
significant corridors;

■■ Identifying bottlenecks in the Canadian logistics system; and

■■ Ensuring Canada’s overall competitiveness in the global marketplace.

These objectives are met using a set of principles that are applicable for all freight modes. Because the 
available data for this paper primarily consisted of truck freight data, the paper principally uses that 
mode to illustrate the concepts, but the measures were developed considering aspects of all travel 
modes. A more detailed explanation of the measures and calculation methods is included in the next 
section, but the basic elements are described below:

■■ An index-based approach is being used to calculate the fluidity indicators rather than simply using 
transit times. Travel times are important and very useful in many contexts. It is difficult, however, to 
compare conditions in corridors of varying lengths by only using travel times. An index that removes 
the effect of trip lengths allows for easier comparisons between corridors and within corridor sections 
and leads to better understanding about the location and timing of problems;

■■ The index concept meets the needs of both technical and nontechnical audiences and users with 
a small amount of explanation, but communication must accompany the performance measures. 
Something as simple as “an index value of 1.30 indicates a 20-hour trip by the fastest group 
of drivers on uncongested roads will require 26 hours by slower drivers or when considering 
congestion” have been used to explain indexes;

■■ The indexes use “rapid” trips as the comparison benchmark. This recognizes that ship, air, rail, 
and truck travel times are going to be different and should not be compared to each other. It also 
allows geographic and topographic constraints to be explicitly included, thereby highlighting the 
operational and infrastructure effects;

■■ The benchmark can also be developed with a goal of comparing similar populations to each other. 
For example, differentiating between the team-driver approach used with some urgent cargo and 
the regular single driver may allow a better, more accurate story to be told about the corridor travel 
conditions;

■■ Travel time is not enough. To understand the meaning of the fluidity indicators, analysts must 
know the “whys” associated with travel time. For example, is the slow travel time in an area caused 
by traffic congestion or by many trucks leaving the main highway to access a truck stop?

■■ Consistent definitions are important for accurate understanding; in some cases this will necessitate 
discussions between Transport Canada, operators, and data providers to resolve or understand the 
differences; and

■■ The application of the fluidity measures will likely evolve as more specific data are gathered, as 
more questions are asked, and as more issues are identified. The keys in the first phase are to show 
that the measures produce reasonable and understandable results. A few specific uses are depicted 
in this paper, but these will grow as the data and measures are more widely disseminated. Using 
the measures always has the effect of improving the data quality and targeting additional data 
collection on important elements, features, or policies.
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Proposed Fluidity Indicators
It follows from the previous discussion that information about both the average travel conditions 
and the reliability of the container trips are important. The reliability is especially important for 
those trips of most interest—the high-priority trips. To characterize the transportation system in 
Canada, TTI proposed two fluidity indicators for Transport Canada—the Fluidity Index and the 
Planning Time Index.

A form of these measures has been used in TTI’s Urban Mobility Report and the U.S. Department of 
Transportation Federal Highway Administration’s Urban Congestion Report for communicating travel 
time mobility and reliability.6, 7 A form of these measures is also described more fully in The Keys to 
Estimating Mobility in Urban Areas as it relates to passenger car mobility and reliability estimation.8

Fluidity Index

The Fluidity Index (FI) is a dimensionless quantity that compares the average travel time in the time 
period of interest to travel time during unconstrained or free-flow conditions (see Equation 1). Free-
flow conditions might be represented with the low end of the quick trips, such as the 5th percentile 
travel time. For example, an FI of 1.50 indicates that a shipment that takes 2 days during free-flow 
conditions may take 3 days (2 days x 1.50) during the time period of interest. The FI provides an 
assessment of the average travel conditions of a freight shipment.

	 (1)

Planning Time Index

The Planning Time Index (PTI) addresses the need for certain high-priority urgent shipments to be 
on time most of the time. It represents the total travel time that should be planned to ensure on-time 
delivery. It compares near-worst-case travel time to a travel time in free-flow conditions (see Equation 
2). For example, a Planning Time Index of 2.00 means that for a two-day trip in light traffic, the total 
time that should be planned for the trip is 4 days (2 days x 2.00 = 4 days). The Planning Time Index is 
useful because it can be directly compared to the Fluidity Index on a similar numeric scale. The PTI 
provides an assessment of the travel time reliability of a freight shipment.

	 (2)

Comparison Baseline

Using an index approach requires that a baseline travel time be determined. Sometimes this is 
described as free-flow or low-volume conditions. Basically, the concept is to identify a relatively fast 
travel time that can be used to judge the times from a group with similar characteristics. In this 
research, researchers defined the free-flow travel time as the 5th percentile travel time for a given 
trip type. The 5th percentile travel time is one of the shortest travel times, thus providing a good 
benchmark for freight shipments.
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Form and Application of Fluidity Indicators

The two fluidity indicators are ratios of time (typically days or minutes depending upon the trip 
length). These two fluidity indicators are valuable because they are scalable for analysis at the 
following levels:

■■ Trip priority: High-priority container trips can be separated out and compared to all trips or trips 
during uncongested travel periods. FI and PTI values can be calculated for each trip priority.

■■ Location: Container trips at different locations along the supply chain can be assessed as well as 
trips along different adjacent corridors. Both indicators can be used for corridor travel as well as 
travel within a “node” (e.g., terminal, port).

■■ Mode: Container trips by a single mode or multiple modes can be compared.

■■ Time: Trips by start time of day or start day of week can be analyzed and compared.

■■ Commodity: If desirable and/or available, the fluidity indicators can be computed and analyzed 
at the commodity level.

Incorporating Trip Urgency

Shippers and receivers (consignees) are not always in immediate need for the goods being 
transported. The range of travel times, in many cases, is caused by this difference in “urgency.” The 
use of indexes allows the analyst to evaluate different freight shipment groups relative to free-flow 
for each shipment group. For example, it will be discussed further in later sections of this paper that 
the roadway travel time data suggest three groups of freight shipments.

■■ Team drivers: More than one driver in a truck can achieve relatively low travel times.

■■ Single driver: One driver must make stops to stay within the hours of service regulations.

■■ Low-priority shipments: Longer travel times can indicate delivery is not a high priority.

A later application in this paper demonstrates how individual Fluidity Indexes and Planning Time 
Indexes are computed for each of these freight shipment groups.

Application to the Supply Chain

Analysts can compute an FI and PTI for each “link” (e.g., roadway for truck or rail line for rail) and/
or “node” (e.g., ports, terminals, or distribution centers) of a supply chain. An aggregate FI or PTI for 
the entire trip can be computed by weighting the TEU hours at each step of the supply chain — the 
amount of time spent traveling the segment by 20-foot equivalent containers. This is illustrated in 
an application at the end of this paper.

The interested reader is encouraged to review prior research that has demonstrated a conceptual 
framework for freight mobility, along with a similar methodology to estimate tonnage and dollar 
amount of commodities by weighting with traffic volume.9

Shippers and receivers (consignees) are not always in immediate need for the goods being transported. 
The range of travel times, in many cases, is caused by this difference in “urgency.”
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Available Data

Desired Information for Decision Making

The desired levels of information for decision making for the FI and PTI can be summarized at 
several levels as identified by Transport Canada:

■■ Level One—shows travel time in days from a foreign port to its final destination in Canada.

■■ Level Two—shows the travel times split into the various modes required to complete the trip with 
each of the modes reported in days.

■■ Level Three—shows even greater detail for each mode.

■■ Level Four—the most disaggregated level, shows the times in hours and includes the average 
times as well as several percentiles that are used in calculating the Fluidity Index and the Planning  
Time Index.

The audience for each of these levels of information is different. Policymakers may use Level One or 
Level Two information, while transportation planners and engineers may concern themselves with 
the causes for delays that are highlighted in Level Three or Level Four data.

Researchers used the most disaggregated level possible to show the most detail. Only the truck data 
provided by Transport Canada had enough detail to analyze at Level Four. Data for the remaining 
modes generally could only be reported at Level Two because only average travel times by mode were 
available. For the application to a supply chain presented at the end of this paper, researchers created 
sample data to demonstrate the use of the FI and PTI for the supply chain.

Available Truck Data

The truck freight and operational data were provided by Transport Canada in two datasets—dispatch 
and global positioning system (GPS). Due to the anonymous nature of the data, it is not possible to 
link the truck-to-truck data included in these two datasets.

Dispatch Truck Data

The dispatch data contains information about specific truck trips. This database serves as a log of 
each truck trip and includes the following:

■■ Trip origin—address, date and time, GPS position;

■■ Trip destination—address, date and time, GPS position;

■■ Number of pieces of freight;

■■ Total cargo weight;

■■ Distance traveled;

■■ Type of trailer(s) used; and

■■ Whether it is a long-haul or short-haul trip.

The dispatch data include tremendous details about the truck trip endpoints. It includes details 
pertaining to the beginning and ending point of the trip as well as how much is being hauled and 
what type of trailer is used for the trip. It does not provide any specific information on the actual 
path taken for the individual trip.
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The truck dispatch data file provided by Transport Canada to TTI had a sample of about 3.5 million 
dispatch records for calendar years 2008 and 2009. The data included trip origins and destinations 
from all of Canada. Because the corridor analyzed was Canada Highway 1, which runs from 
Vancouver, British Columbia to Toronto, Ontario, the dispatch records needed to be narrowed to 
focus only on this corridor. In many cases, the city listed in the database was not one of these central 
cities such as Toronto but was a suburb of the metropolitan area (e.g., Mississauga, which is a suburb 
of Toronto). The project team included these “suburb cities” within the metropolitan area as part of 
the central area.

GPS Truck Data

Trucking companies enter into agreements with GPS companies to help track the location of their 
fleet vehicles. The GPS companies determine the location of a truck at regular time intervals that are 
agreed upon with the trucking company. In addition to these regular intervals, the truck driver will 
send location information when the driver is making an operational change to his or her situation, 
such as stopping for fuel or making a delivery. The GPS company provides the following data every 
time a truck’s position is ascertained:

■■ Truck identification code;

■■ Date and time stamp; and

■■ GPS position including longitude and latitude.

Researchers estimated travel time from the individual truck GPS readings. To accomplish this task 
there were several issues with the data:

■■ The initial truck GPS datasets consisted of about 450 million truck records, which presented 
several challenges with processing the information. A data record occurs every time a signal is sent 
to the satellite showing the truck’s location;

■■ The truck GPS data consisted of truck geographic location details. However, the latitude and 
longitude were not linearly referenced to the route on which the truck was traveling. Lack of linear 
referencing made it difficult to find the exact distance traveled by a truck between two time periods 
along the route. Algorithms were developed to “match” these GPS points to points on the roadway 
network; and

■■ The format of the date field and truck ID field were incompatible with certain software, such as 
ArcGIS 9.3, which were used for linear referencing of the truck data. When the truck GPS data were 
opened in ArcGIS, the truck IDs were read as a scientific format and were truncated.

Working with 450 million truck records was overwhelming. To have a more manageable dataset, 
the data from October 2008 were chosen as the sample to be analyzed. The initial 35 million truck 
records from this dataset were scattered on several different routes all over Canada. The data were 
processed using SAS software to filter out the unwanted data that were not on the corridor. Next, 
researchers linearly referenced the truck GPS data records to get measurements between two truck 
GPS data points along a route. ArcGIS 9.3 software was used to achieve this task.

Combining Data Sources

Multiple datasets can provide better explanations of why travel times are distributed the way they 
are. However, evaluating different data sources requires an understanding of the original use and 
preparation of the data. For example, truck travel time distributions using the truck dispatch data 
often show a “mini-peak” at 24 hours due to a large number of drivers checking in as “available” to 
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the dispatchers the day after a delivery. Such “mini-peaks” due to driver availability do not appear 
in the real-time GPS data because the data are collected differently. This is demonstrated with an 
application in the next section of this paper.

Application: Truck Shipments
The application that follows describes the use of the truck data to estimate the Fluidity Index and 
the Planning Time Index. The index values shown in the tables and example applications that follow are only 
meant to demonstrate the methodology and how the fluidity indicators can be calculated and presented. These 
results are not intended for system monitoring at this time.

Investigating the truck dispatch data, researchers found that there are three types (groups) of truck 
trips occurring along the Vancouver to Toronto corridor (see Table 1). Researchers assumed that these 
three groups of truck trip types are team driving, solo driving, and low-priority shipments. Team 
driving, where multiple drivers are assigned to one truck, is utilized in the case of a critical time delivery. 
The trailer contents must reach a destination in a shorter time period than one truck driver can safely 
and legally drive due to hours-of-service constraints of 10-hour maximum driving time without rest. 
Solo driving occurs when the delivery time is not quite as constrained and a single driver can safely and 
legally get the trailer to its destination in the required amount of time. “Low-priority” travel has the 
longest travel times of the three types. This type of driving occurs when the delivery date is set out in 
the future longer than it would take for a single driver to safely make the trip.

Table 1 shows the shortest and longest travel times by trip type for each city pair. Travel times include 
influences of congestion, roadway length, roadway geometry, fuel station locations, and so forth.

A statistical analysis was performed on each of these trip types for each city pair. Several statistics 
were calculated including the average travel time as well as the 5th, 10th, and 95th percentile travel 
times. As described previously, the 5th percentile for each trip type was used as the free-flow travel 
time for that trip type. The average travel time is divided by the 5th percentile travel time to calculate 
the Fluidity Index for each trip type (per Equation 1).

Table 1: Shortest and longest travel times by city pair and trip type (adapted from 
reference 10).

City Pair Direction

Team Driving 
(Hours)

Solo Driving  
(Hours)

Low-Priority  
(Hours)

Shortest Longest Shortest Longest Shortest Longest

Vancouver-Toronto Eastbound 48 90 91 144 145 192

Vancouver-Calgary Eastbound 11 18 19 31 32 48

Calgary-Regina Eastbound 7 16 17 24 25 40

Regina-Winnipeg Eastbound 4 10 11 19 20 34

Winnipeg-Toronto Eastbound 24 30 31 50 51 72

Toronto-Vancouver Westbound 40 90 91 144 145 220

Calgary-Vancouver Westbound 11 15 16 28 29 48

Regina-Calgary Westbound 6 12 13 22 23 38

Winnipeg-Regina Westbound 4 10 11 19 20 32

Toronto-Winnipeg Westbound 24 38 39 52 53 72
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The 95th percentile travel time shows one of the longest travel times and slowest overall speeds to 
complete the trip. There can be several causes for this longer trip length, including congestion on the 
roadway, poor weather conditions, or tourist travel. The 95th percentile travel time is divided by the 5th 
percentile travel time in the calculation of the Planning Time Index for each trip type (per Equation 2).

The truck dispatch does not contain enough detail about each trip to identify where bottlenecks may 
exist in the transportation network. The data can demonstrate the volatility associated with trips 
over longer distances. For a more detailed analysis at a more local level, the GPS truck data provides 
the necessary detail.

For the analysis findings that follow, it should be noted that the truck dispatch data were extensive 
enough to provide all of the necessary information to calculate the FI and PTI. With the other modes, 
only the average travel time values were provided. For these other modes, the FI and PTI could not be 
calculated, so the average travel time was reported alone without the FI and PTI.

In many instances there were not sufficient data to calculate the index values at the monthly level. 
Researchers found that the dispatch data had a great number of erroneous entries. Selected reasons 
for erroneous entries include those with very fast or very slow travel times, data entered into the 
incorrect field, or situations where the origin or destination could not be identified. Such records 
were removed, but it is possible, even after some quality control of the data, that some of the 
remaining data could still contain errors.

Index Values

Table 2 shows the Fluidity and Planning Time Indexes calculated using the dispatch truck data for 
city pairs along the study corridor (Vancouver to Toronto) in the eastbound direction.

The largest FI occurred in the Vancouver to Toronto city pair with a 2.28. The PTI was 3.27 for this 
city pair. These relatively higher values over the longer corridor are intuitive because the variation 
in trips over long distances will be greater than that of trips with shorter distances. The relatively 
smaller sample size from Vancouver to Toronto may also contribute to these relatively larger values. 
The lowest FI occurred in the Winnipeg to Toronto city pair in October with a 1.40. Note that 
researchers included all trip types (e.g., solo driving) in all the calculations.

City Pair Data Descriptions

The effects of factors such as distance, operating conditions, and traffic volume that might be 
encountered in corridor or operational analysis are easier to see in graphical form at the city-pair level 
of data. This section provides an example of the findings that might be drawn from the available data, 
as well as illustrates the measure values. The example provided has several of the key analytical values 
noted, as well as the summary performance measures for that section of the Vancouver to Toronto 
corridor. All trip type groups are combined in the graph; a subsequent analysis provides a discussion of 
the separation into trip urgency groups. Additional city-pair examples are provided in the full report.10

Regina to Winnipeg

Performance characteristics, including the fluidity indicators, are shown in Figure 1. Figure 1 has a 
shape similar to a lightly congested urban roadway with many trips near to the free-flow condition 
and a few “bad days” with weather or crashes that extend travel times upward. This “long tail” 
distribution diminishes the usefulness of statistics that assume a statistically “normal” bell curve 
shape (e.g., standard deviation).

The average travel time of 10.1 hours yields an FI of 2.02 while the PTI is a relatively high 5.50, 
owing to the 24-hour and 29-hour travel time “mini-peaks.” The “mini-peak” at 24 hours is likely 
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Table 2: Summary of Fluidity Index and Planning Time Index by city pair and 
month—eastbound (adapted from reference 10).

Month

City—Pairs

Vancouver to 
Toronto

Vancouver to 
Calgary

Calgary to 
Regina

Regina to 
Winnipeg

Winnipeg to 
Toronto

FI PTI FI PTI FI PTI FI PTI FI PTI

Annual Avg 2.28 3.27 1.83 3.11 1.93 3.00 2.02 5.50 1.56 2.34

January — — 1.94 3.56 1.93 2.82 2.04 5.60 1.57 2.21

February — — 1.91 3.07 1.93 2.82 2.00 5.50 1.60 2.34

March — — 1.83 2.81 1.80 2.82 2.02 5.60 1.61 2.49

April — — 1.91 3.19 1.91 2.82 1.92 4.40 1.58 2.42

May — — 1.65 2.41 1.81 2.65 1.78 3.60 1.68 2.60

June — — 1.63 2.78 2.06 2.82 1.74 3.70 1.58 1.98

July — — 1.86 3.30 2.44 3.00 1.76 3.60 1.55 2.08

August — — 2.06 3.15 2.35 2.88 1.76 3.50 1.51 2.08

September — — 1.76 2.81 1.89 2.82 2.04 5.40 1.46 2.04

October — — 1.72 2.81 1.84 2.82 2.24 5.56 1.40 2.13

November — — 1.90 3.19 1.89 2.82 2.20 5.70 1.48 2.09

December — — 2.02 3.19 1.87 2.82 2.08 5.60 1.65 2.38

Note: “—” indicates limited sample sizes of data points, so measure could not be computed.

due to a large number of drivers checking in as “available” to the dispatchers the day after a delivery. 
This “mini-peak” at 24 hours is a data quality issue when using the dispatch data for performance 
monitoring because it can skew the distribution. The median travel time of 7.5 hours is unusually far 
from the average travel time (on a percentage basis), also due to the effect of the mini-peaks “pulling” 
the average travel time value higher.

Figure 2 presents the results of an analysis that divides the trip data into one of three urgency levels 
for the Vancouver to Calgary trip. The designation of urgency was accomplished by drawing dividing 
lines through the low point in the number of trips after the peak in the first two groups; this is 
somewhat arbitrary for the purposes of illustrating the concept.

The Fluidity Index and Planning Time Index values all decline markedly using this approach. This 
might be closer to the manner in which the index values would be used by shippers and manufacturers 
who would know the group in which their drivers operate. The values in Figure 2 suggest that, on 
average, they should allow 14 to 24 percent more time than the fastest drivers within their group (see 
Figure 2 FI values). For trips that must be on time, a budget of between 35 and 52 percent above the 
fastest trips in their group should be used (see Figure 2 PTI values).

Without confirmation from the trucking companies or a code in the data, the group definitions used in this paper 
are only speculation and are only valid for data experimentation; they should not be used for comprehensive 
performance evaluation at this time.
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Combining Data Sources—Better Explanations and Data Quality Considerations
Multiple datasets can provide an indication of the “why” information related to travel times, but 
it also requires an understanding of the original use and preparation of the data. Figure 2 also 
compares the travel time data from the dispatchers (solid line; used in preceding sections) with a 
limited set of data from truck location monitoring devices (dashed line; tracked by GPS). The truck 
devices identify location and time, data that might be considered directly relevant. The average travel 
time in the GPS dataset is 14.9 hours, and the 95th percentile is 19.9 hours. Note that these values 
are not shown in Figure 2. This closely resembles the distribution of the “fast drivers” in Figure 
2 from the truck dispatch data with an average of 14.7 hours and 95th percentile travel time of 
17.5 hours. As mentioned previously, the dispatcher data, however, appear to be compiling a driver 
availability dataset because of the “mini-peaks” at 24 hours. The average time is more than 24 hours, 
and the 95th percentile is 48 hours. As one would expect, clearly there are differences in the methods 
used to compile the two datasets, differences that are important in the preparation of an accurate 
picture of freight travel conditions.

Figure 1: Performance statistics using truck dispatch data—Regina to Winnipeg, 
eastbound (575 kilometers and 2,739 trips). (Adapted from reference 10).

The dispatch data shows approximately 80 percent of the trips are less than 12 hours. The other 1 trip in 5, 
however, is spread over a long time increasing the standard deviation and the 95th percentile travel time.  
The average trip time is well above the median, suggesting a need to reexamine the travel time cutoff point for 
“long” trips (32 hours was used in this example) or to identify the cause of so many long travel times  
(e.g., weather, construction, dispatcher urgency). 

Summary: A trip that takes 5 hours in the best conditions will take 10 hours (2.02 x 5 = 10.1 hours) on 
average. Shippers should allow 28 hours (5.50 x 5 = 27.5 hours) for trips with an important arrival time.
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Application—Multimodal Supply Chain
After investigating the use and calculation of the measures using the truck data, researchers 
demonstrate here the application of the fluidity indexes to an international and multimodal supply 
chain. Researchers investigated a supply chain from Shanghai, China to Toronto, Ontario, Canada. 
The multimodal trip includes the following elements:

■■ Ocean travel time (A);

■■ Port dwell time (B);

■■ Port drayage time (C);

■■ Rail dwell time awaiting departure (D);

■■ Rail travel time (E);

■■ Rail dwell time upon arrival (F);

■■ Rail drayage time to a distribution center (G);

■■ Truck travel time (H); and

■■ Truck dwell time upon arrival (I).

Figure 2: Distribution of trips by trip urgency group also showing comparison 
of truck GPS and truck dispatch data (Vancouver to Calgary, 915 kilometers). 
(Adapted from reference 10).

Calculating the performance measures for each trip urgency group provides a picture of a less congested, more 
reliable system.
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Note that these results are intended as a demonstration of the power of the fluidity indicators for decision making 
and are not intended for system monitoring at this point.

Table 3 has three different shades of cells depending on the source of the data as follows:

1.	 The non-shaded “Avg” (average) cells contain monthly data (when available).

2.	 The light-gray shaded cells contain annual average information that was used to populate all of 
the monthly cells (i.e., there is no monthly variation).

3.	 The dark-gray shaded cells contain data that were created for demonstration purposes.

This example assumes that 2 million TEUs move from Shanghai to the Port of Vancouver in a year. 
Of these TEUs, 1.5 million move by rail to Toronto with the remainder being transported by truck. 
Researchers calculated a Fluidity Index (FI) and Planning Time Index (PTI) for each segment of the trip. 
Table 3 also shows the average, 5th percentile, and 95th percentile travel times by month and mode.

The headings in Table 3 for each component of the supply chain are labeled with a letter from A to I. 
The rail trip includes the components labeled A, B, C, D, E, F, and G, and the truck trip includes the 
components labeled A, B, C, H, and I. These letter labels match the letters provided in parentheses in 
the previous bulleted list of each supply chain component.

The individual trip FI and PTI must be weighted based on their contribution to the entire supply 
chain to calculate a representative “weighted” overall FI and PTI for the entire supply chain. 
Researchers used TEU hours to weight the individual trip indexes. Since rail carries 1.5 million TEUs 
as opposed to 0.5 million TEUs on truck, the rail indexes will have a greater weighted effect on the 
overall indexes. The assumption was made that a greater percentage of TEUs are moved in March, 
July, September, and October than the other months for illustration purposes.

The ocean travel time takes the largest percentage of the entire trip with about 347 hours. The port 
drayage time takes the shortest percentage of the trip with just over an hour (see Table 3).

Table 4 illustrates the final weighted Fluidity Index and Planning Time Index for the supply chain 
application. In this example, the overall Fluidity Index for the entire supply chain is 1.28. The month 
with the longest travel time is January with a FI of 1.37. January also has the least reliable trip on 
average with a 1.66 Planning Time Index as opposed to the annual average PTI of 1.55. The quickest 
and most reliable trips occur during the month of May with an FI of 1.23 and a PTI of 1.49.

This example application demonstrates how the FI and PTI can provide supply chain performance 
information by mode and include a method to create annual measures by weighting monthly values 
by cargo amounts.
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Table 3: Example of calculating the Fluidity Index and Planning Time Index for an 
international and multimodal supply chain. (Adapted from reference 10).

Port Metro 
Vancouver 
(2009)

A–Ocean Travel Time 
(hours or index)

B–Port Dwell Time 
(hours or index)

C–Port Drayage Time 
(hours or index)

Avg 5th 95th FI PTI Avg 5th 95th FI PTI Avg 5th 95th FI PTI

Annual 
Average

346.7 271.6 424.2 1.28 1.56 60.8 40.0 73.0 1.52 1.85 1.3 1.0 2.0 1.30 2.00

January 346.7 271.6 424.2 1.28 1.56 78.3 40.0 94.0 1.96 2.35 1.3 1.0 2.1 1.30 2.10

February 346.7 271.6 424.2 1.28 1.56 65.3 40.0 78.4 1.63 1.96 1.3 1.0 2.0 1.30 2.00

March 346.7 271.6 424.2 1.28 1.56 53.8 40.0 64.6 1.35 1.61 1.3 1.0 2.2 1.30 2.20

April 346.7 271.6 424.2 1.28 1.56 71.8 40.0 86.2 1.80 2.15 1.3 1.0 2.0 1.30 2.00

May 346.7 271.6 424.2 1.28 1.56 44.2 40.0 53.0 1.11 1.33 1.3 1.0 2.1 1.30 2.10

June 346.7 271.6 424.2 1.28 1.56 57.6 40.0 69.1 1.44 1.73 1.3 1.0 2.0 1.30 2.00

July 346.7 271.6 424.2 1.28 1.56 67.7 40.0 81.2 1.69 2.03 1.3 1.0 2.2 1.30 2.20

August 346.7 271.6 424.2 1.28 1.56 50.2 40.0 60.2 1.26 1.51 1.3 1.0 2.0 1.30 2.00

September 346.7 271.6 424.2 1.28 1.56 57.1 40.0 68.5 1.43 1.71 1.3 1.0 2.1 1.30 2.10

October 346.7 271.6 424.2 1.28 1.56 61.7 40.0 74.0 1.54 1.85 1.3 1.0 2.0 1.30 2.00

November 346.7 271.6 424.2 1.28 1.56 56.9 40.0 68.3 1.42 1.71 1.3 1.0 2.2 1.30 2.20

December 346.7 271.6 424.2 1.28 1.56 65.5 40.0 78.6 1.64 1.97 1.3 1.0 2.0 1.30 2.00

Port Metro 
Vancouver 
(2009)

D–Rail Dwell Time—
Departure  

(hours or index)
E–Rail Travel Time 
(hours or index)

F–Rail Dwell Time—
Arrival  

(hours or index)

G–Drayage Time to 
Distrib. Center (hours 

or index)

Avg 5th 95th FI PTI Avg 5th 95th FI PTI Avg 5th 95th FI PTI Avg 5th 95th FI PTI

Annual 
Average

14 11 16 1.29 1.48 108 100 119 1.08 1.19 21 18 27 1.19 1.48 14 12 19 1.19 1.55

January 15 11 18 1.45 1.66 118 100 130 1.18 1.30 25 18 32 1.41 1.76 18 12 23 1.46 1.90

February 14 11 16 1.33 1.53 118 100 130 1.18 1.30 24 18 29 1.31 1.63 15 12 19 1.24 1.61

March 15 11 17 1.40 1.61 118 100 130 1.18 1.30 22 18 28 1.22 1.53 16 12 21 1.36 1.77

April 15 11 17 1.42 1.63 105 100 116 1.05 1.16 19 18 24 1.07 1.34 13 12 17 1.06 1.38

May 14 11 17 1.37 1.58 105 100 116 1.05 1.16 20 18 25 1.11 1.39 13 12 16 1.04 1.35

June 14 11 16 1.29 1.48 105 100 116 1.05 1.16 22 18 27 1.21 1.51 13 12 18 1.12 1.46

July 14 11 16 1.33 1.53 105 100 116 1.05 1.16 19 18 24 1.07 1.34 13 12 18 1.12 1.46

August 11 11 13 1.05 1.20 105 100 116 1.05 1.16 19 18 24 1.07 1.33 15 12 20 1.26 1.64

September 13 11 15 1.22 1.40 105 100 116 1.05 1.16 19 18 24 1.08 1.35 14 12 18 1.14 1.48

October 13 11 15 1.20 1.38 105 100 116 1.05 1.16 21 18 26 1.17 1.46 14 12 18 1.18 1.53

November 12 11 14 1.17 1.35 105 100 116 1.05 1.16 22 18 27 1.22 1.52 14 12 18 1.14 1.48

December 13 11 15 1.27 1.46 105 100 116 1.05 1.16 24 18 29 1.31 1.63 14 12 18 1.14 1.48
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Table 3 (continued): Example of calculating the Fluidity Index and Planning Time 
Index for an international and multimodal supply chain. (Adapted from reference 10).

Port Metro Vancouver 
(2009)

H–Truck Travel Time  
(hours or index)

I–Truck Dwell Time-Arrival 
(hours or index)

Avg 5th 95th FI PTI Avg 5th 95th FI PTI

Annual Average 127.4 90.0 159.0 1.42 1.77 3.0 2.0 4.0 1.50 2.00

January 127.4 90.0 159.0 1.42 1.77 3.0 2.0 4.0 1.50 2.00

February 127.4 90.0 159.0 1.42 1.77 3.0 2.0 4.0 1.50 2.00

March 127.4 90.0 159.0 1.42 1.77 3.0 2.0 4.0 1.50 2.00

April 127.4 90.0 159.0 1.42 1.77 3.0 2.0 4.0 1.50 2.00

May 127.4 90.0 159.0 1.42 1.77 3.0 2.0 4.0 1.50 2.00

June 127.4 90.0 159.0 1.42 1.77 3.0 2.0 4.0 1.50 2.00

July 127.4 90.0 159.0 1.42 1.77 3.0 2.0 4.0 1.50 2.00

August 127.4 90.0 159.0 1.42 1.77 3.0 2.0 4.0 1.50 2.00

September 127.4 90.0 159.0 1.42 1.77 3.0 2.0 4.0 1.50 2.00

October 127.4 90.0 159.0 1.42 1.77 3.0 2.0 4.0 1.50 2.00

November 127.4 90.0 159.0 1.42 1.77 3.0 2.0 4.0 1.50 2.00

December 127.4 90.0 159.0 1.42 1.77 3.0 2.0 4.0 1.50 2.00

Note: Some values are rounded in table.

Table 4: Final weighted Fluidity Index and Planning Time Index for an 
international and multimodal supply chain application.

Port Metro 
Vancouver 
(2009)

Weighting Factors—TEU-Hours (in thousands)

FI PTIA–Ocean
B–Port 
Dwell

C–Port 
Drayage

D–Rail 
Dwell 

Departure
E–Rail 
Travel

F–Rail 
Dwell 
Arrival

G–Rail 
Final 

Drayage

H–
Truck 
Travel 
Time

I–Truck 
Dwell 
Time

Annual Total 693,400 121,610 2,600 20,355 162,308 32,011 21,397 63,700 1,500 1.28 1.55

January 43,338 9,788 163 1,425 11,063 2,381 1,643 3,981 94 1.37 1.66

February 43,338 8,163 163 1,313 11,063 2,203 1,395 3,981 94 1.31 1.58

March 86,675 13,450 325 2,756 22,125 4,125 3,060 7,963 188 1.28 1.54

April 43,338 8,975 163 1,397 9,844 1,809 1,193 3,981 94 1.31 1.59

May 43,338 5,525 163 1,350 9,844 1,875 1,170 3,981 94 1.23 1.49

June 43,338 7,200 163 1,266 9,844 2,043 1,260 3,981 94 1.26 1.53

July 86,675 16,925 325 2,625 19,688 3,619 2,520 7,963 188 1.30 1.57

August 43,338 6,275 163 1,031 9.844 1,800 1,418 3,981 94 1.24 1.50

September 86,675 14,275 325 2,400 19,688 3,638 2,565 7,963 188 1.26 1.52

October 86,675 15,425 325 2,363 19,688 3,938 2,655 7,963 188 1.28 1.54

November 43,338 7,113 163 1,153 9,844 2,053 1,283 3,981 94 1.26 1.53

December 43,338 8,188 163 1,247 9,844 2,203 1,283 3,981 94 1.29 1.56

Note: Final FI and PTI values are weighted by TEU hours to obtain systemwide supply chain performance, 
which includes rail and truck movements. Some values are rounded.
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Conclusions and Discussion
World trade will continue to grow, and Canada’s competitiveness depends on a reliable and efficient 
freight transportation system to import and export commodities the most efficient way. It is 
important to systematically measure the efficiency of Canada’s supply chain system to be able to 
make improvements to the systems and increase competitiveness.

The Measures

The Fluidity Index (FI) and Planning Time Index (PTI) will serve as measures of the overall efficiency 
of Canada’s transportation system at a corridor level. Specific objectives of the measures are to:

■■ Provide transparent reliability information pertaining to every one of Canada’s freight significant 
corridors;

■■ Identify bottlenecks in the Canadian logistics system; and

■■ Ensure Canada’s overall competitiveness in the global marketplace.

The index-based approach is being proposed to calculate fluidity rather than simply using travel 
times. Information from transportation providers is imperative to the overall success of the FI and 
PTI. The successful implementation of the FI and PTI in Canada may encourage the other nations in 
North America to participate in similar initiatives.

The FI and PTI will have many factors in common with other mobility and congestion indicators. 
Experience from previous applications of the mobility principles provide analysts and planners with 
information to identify important factors and problems, communicate the benefits of investments 
and policy changes, and prioritize possible actions that affect the motoring public and freight 
operations. Some of the relevant principles include the following:

■■ Both average travel time conditions (FI) and reliability of travel time (PTI) are needed to measure 
freight system efficiency;

■■ No single measure will satisfy all fluidity monitoring needs, and no single measure can identify all 
aspects of fluidity. Mobility and freight fluidity are complex and in many cases requires more than 
one measure, more than a single data source, and more than one analysis procedure;

■■ The FI and PTI are described as ratios relative to travel time in “free-flow” conditions. They can 
both be used as multimodal transportation system measures, and they can be calculated for a 
range of corridors and regional systems; and

■■ At least six months, and desirably one year, of travel time data should be compiled to identify 
typical and unusual conditions. One year of data allows seasonal and market variations to be 
incorporated into the performance measures. If data sources are changed, analysis methods 
altered, or data quality standards adjusted, it will be useful to compile measures using both old 
and new standards for several months to understand the “translation” between the measures.

Data Quality

Information from shippers and carriers is a key element to develop a reliable FI and PTI. As with any 
analysis, the results of the FI and PTI calculation are only as good as the data used in the process. 
Transport Canada has many rich sources of data for this freight mobility analysis. However, as with 
any data, there were some issues identified with the various datasets. Many of the problems are 
related to consistency. In most cases, it is better to have less data of high quality rather than to have a 
lot of data with data quality issues (e.g., typos, inconsistent data entry, missing fields). Much of these 
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data were eliminated to perform an analysis, and if the fluidity indicators concept is to be widely 
deployed, reducing the amount of resources needed to clean and manage the data will be important.

Proof of Concept

The methodology and applications shown in this paper were used to calculate both FI and PTI values 
where sufficient data were available. The FI and PTI were calculated based on all trips and for several 
different types of truck trips because these different types of trips have different requirements of and 
uses for the transportation system.

The measure tables showed the results at different levels of aggregation from a travel time for the 
entire supply chain to the amount of time required at particular nodes along a trip (e.g., port dwell 
or truck drayage). The suggested freight unit to compare across the modes is the 20-foot equivalent 
unit (TEU) as estimated from total freight flows (not simply the volume of sampled travel times).

The detailed GPS data can be used to perform analyses at a very detailed level. This GPS information 
can supplement other information such as the less detailed dispatch data to gather a complete 
picture as to how the transportation network is performing and where potential problems exist at a 
very microscopic level.

Future Work

The corridor and modes selected for the proof of concept described in this paper include an emphasis 
on roadway, due to the detailed information available for this mode. However, given that Canada’s 
largest trade partner is the United States, there is substantial movement of freight between these 
two countries. Efficient cross-border trade by truck between Canada and the United States affects 
Canada’s competitiveness; therefore, future work should include the analysis of a corridor that has 
a land port of entry.
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  Coordinated arterial signal timing plans are typically designed for normal weather 
conditions based on a number of assumed traffic flow characteristics. Qualitatively, during 
winter operations vehicle speeds decrease, arrival time of platoons shift, vehicle headway 
increases, platoon dispersion increases, and saturation flow rates decrease. As a result, good 
weather signal timing plans may be less than optimal during winter operations. Although 
there has been some research conducted regarding the effects of weather on some traffic flow 
parameters, these efforts have been based upon manual field observations. There has been little 
work on developing automated methods of measuring these parameters or assessing of the 
benefits that could be achieved by implementing alternative timing plans during winter events. 

Assessing Signal Timing Plans 
for Winter Conditions
By Thomas M. Brennan Jr., Christopher M. Day, Jason S. Wasson, James R. Sturdevant, and Darcy M. Bullock

Abstract
This paper presents findings from the automated collection of high-resolution signal controller data 
and Bluetooth® probe vehicle travel times to characterize both the microscopic and macroscopic 
operation of a four-intersection signalized arterial during winter weather conditions (snow and ice 
on pavement) as well as clear pavement conditions. An 83-second increase in median travel time 
through the system was measured during winter conditions. Platoon shifts of 15, 25, and 30 seconds 
were measured at three intersection links that corresponded to an approximate reduction in design 
speed of 7 to 11 miles per hour (mph) on a corridor with a posted speed of 55 mph. Alternative 
offsets were calculated that showed an opportunity to decrease overall vehicle delay by 26.7 percent 
for southbound vehicles during the a.m. peak snow event.
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Introduction and Concept 
To determine whether coordination will benefit a signalized arterial, one of the factors that needs to 
be known is how dispersed a platoon of vehicles becomes as it travels through the system. As quoted 
in the Traffic Control Systems Handbook, page 3.35: 1

“�When a platoon of vehicles is released from a traffic signal, the degree to which this platoon has dispersed at 
the next signal (difference from profiles at releasing signal) in part determines whether significant benefits 
can be achieved from signal coordination.” 

Various models and equations are currently used to determine the degree of dispersion based on 
factors such as travel speed, headway, and volume.1, 2, 3 The traffic flow characteristics used for design 
are generally based upon normal operational conditions (i.e., clear weather). In addition, direct 
field observation of platoon arrivals during peak volume periods are often used to field tune traffic 
signal offsets. However, field observation and tuning of traffic signal offsets during winter weather 
conditions are not scalable and raise safety concerns.

This paper defines procedures to use high-resolution, event-based traffic controller data to directly 
measure traffic flow characteristics and coordinated platoon characteristics. The use of high-
resolution data allows the visual display of the interaction of signal phase information with respect 
to advance detection cycle by cycle. This intersection-level data is coupled with Bluetooth® probe 
travel time data to assess system-level impact. The following three flow characterization concepts 
provide an indication of platoon presence and its associated dispersion: 

■■ What is the change in corridor travel speed?

■■ What is the change in travel link approach headway?

■■ What is the change in platoon formation and dispersion?

Corridor travel speed is obtained from the Bluetooth® probe travel, while the headway and platoon 
characteristics are obtained from high-resolution, event-based traffic control data. These concepts are 
described in subsequent sections and are used to evaluate the need for signal coordination during an 
adverse weather event. As would be expected, there was an increase in corridor travel time and link approach 
headways during observed snow events. Observed traffic patterns during the snow event as compared to a 
clear-weather day indicate that there is an opportunity to improve coordination during a snow event. To 
quantify this observed opportunity, an optimization algorithm to minimize delay is applied to determine 
whether the arterial would benefit from alternative signal offsets during a snow event.4, 5 

Literature Review 
Two notable inclement weather plans have been developed for the Utah Department of Transpor-
tation (USA) and the city of Anchorage, AK, USA. 6, 7 In these studies, alternative timing plans are 
proposed to improve winter weather vehicle progression. A comprehensive literature review of sev-
eral winter operation studies had been conducted to document weather impacts on arterial traffic  
flow.6, 8, 9 All of the studies support the notion that adverse weather conditions, such as snow, affect 
the traffic flow characteristics of the corridor. Qualitatively, it is intuitive that during winter condi-
tions vehicle speeds decrease, arrival time of platoons shift, platoon dispersion increases, vehicle 
headway increases, and saturation flow rates decrease.7, 10,11, 12, 13, 14 As a result, good weather signal 
timing plans may be less than optimal during winter events. Therefore, improvements to the signal 
coordination are possible. 6, 7, 9, 11, 12, 13, 14 Although there has been some research conducted regarding 
both the effects of weather on some traffic flow characteristics and how changes to the signal offset 
and timing can improve traffic progression, there has not been any comprehensive measurement of 
both traffic flow characteristics and system arterial travel time during winter weather events to esti-
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mate the benefits (if any) that could 
be obtained by implementing alter-
native winter weather timing plans. 

Indiana Instrumented 
Corridor 
Figure 1 shows a 1.6 mile (mi) (2.6 
kilometer [km]) portion of SR 37 
in Noblesville, IN, USA, located 
northeast of Indianapolis, IN. This 
is a coordinated system made up 
of four intersections. A portion 
of the coordinated phases are 
also actuated.4, 5 Each intersection 
in the arterial features advance 
detectors 405 feet (ft) (123 meters 
[m]) upstream of the stop bar on 
all coordinated northbound and 
southbound movements. Each of the 
intersections—I-01, I-02, I-03, and 
I-04—has the capability of logging 
high-resolution controller data (phase and detector status changes) at a resolution of 0.1 seconds.16 

Two permanent Bluetooth® sensors for collecting unique media access control (MAC) addresses (BT-
01 and BT-04) were also deployed along the arterial at intersections I-01 and I-04, respectively.4, 17, 18 
High-resolution controller and Bluetooth® probe data were remotely collected via a wireless private 
Internet connection.

In Figure 2, where “N” is equated to the number of probe vehicles, plots of travel time measurements 
of vehicles traveling between BT-01 and BT-4 are shown. These Bluetooth® monitoring stations 
are located at the signalized intersection cabinets. Although midblock mounting provides more 
precise characterization of system travel time, the availability of power and communication at a 
signalized intersection provides a much more cost-effective, long-term data collection environment 
necessary for studies conducted over several weeks when the presence of a significant winter storm is 
highly variable. Despite suboptimal mounting, other studies have compared midblock with cabinet 
mounting in a side-by-side manner and have shown that intersection mounting of Bluetooth® probe 
monitoring sites provides reasonable travel time characterization over longer distances.4

Measurement and Assessment

Travel Time

Ten days of travel time are displayed for the northbound (Figure 2a) and southbound (Figure 2b) 
directions. During the 10-day data collection, a snow event occurred on Thursday, January 7, 2010, 
which can be compared to a clear-weather day on Thursday, January 14, 2010. Comparing the travel 
time plots for these two days, the snow event travel times (Figure 2.a.i and Figure 2.a.iii) have a 
noticeable increase compared to a clear-weather (Figure 2.a.ii and Figure 2.b.iv) for both the north-
bound and southbound directions. The coordinated arterial is optimized to minimize the delay in 
the southbound direction in the a.m. peak under clear-weather conditions. The southbound direc-
tion serves the majority of the vehicle volume during the a.m. peak period (an approximate 70/30 
directional split during normal a.m. operations).

Figure 1: Location of advance detectors on 
study corridor (State Route 37).

(I-01: SR 32/37)
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These travel times are perhaps more effectively compared during particular time periods using cu-
mulative frequency distributions (CFDs), as shown in Figure 3. 

■■ Figure 3.a. shows northbound weekday a.m. peak (06:00 – 09:00) travel times measured from probe 
vehicle data going from station BT-04 to BT-01 (Figure 1). A median travel time increase of 95 
seconds is observed in the northbound travel direction during the snow event.

■■ Figure 3.b. shows southbound weekday a.m. peak (06:00 – 09:00) travel times measured from probe 
vehicle data going from BT-01 to BT-04 (Figure 1). A median travel time increase of 83 seconds is 
observed in the southbound direction during the snow event.

Figure 2: 10-Day (Jan. 6, 2010 – Jan. 15, 2010) probe vehicle travel times 
(minutes) along SR37; (i & iii) snow conditions; (ii & iv) clear weather conditions.

b) Southbound BT-01 to BT-04 (vehicle volume [N]: Niii = 199, Niv = 217)

a) Northbound BT-04 to BT-01 (vehicle volume [N]: Ni = 179, Nii = 241)
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Figure 3: Cumulative frequency distribution of probe vehicle travel times along SR 
37 during a.m. peak 06:00–09:00 (<= 10 minutes).

b) Southbound BT-01 to BT-04
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Figure 4: 25th, 50th, and 75th quartile box-plot distribution of vehicle travel times 
along SR 37 corridor a.m. peak 06:00 – 09:00 (<= 10 minutes).

b) Southbound BT-01 to BT-04

a) Northbound BT-04 to BT-01 
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Table 1: Probe vehicle travel times for SR 37 corridor.

Dates

N

(Veh)
Mean Travel 

Time (s) S.D.

Percentiles (s) Interquartile 
Range

 (s)25th 50th 75th

Southbound BT-01 to BT-04 a.m. peak (06:00 – 09:00)

W; 1/6/10 86 166 1.21 126 149 173 47

(SNOW) Th; 1/7/10 94 252 1.33 210 235 271 61

F; 1/8/10 77 191 1.29 152 176 202 50

M; 1/11/10 99 175 1.58 125 150 181 56

Tu; 1/12/10 102 183 1.52 129 160 186 57

W; 1/13/10 103 179 1.64 134 152 183 50

Th; 1/14/10 97 184 1.64 127 152 190 63

F; 1/15/10 89 208 2.17 129 149 200 71

Northbound BT-04 to BT-01 a.m. peak (06:00 – 09:00)

W; 1/6/10 52 164 0.82 130 157 178 48

(SNOW) Th; 1/7/10 52 268 1.45 210 252 288 79

F; 1/8/10 32 181 0.46 161 180 200 39

M; 1/11/10 37 171 1.20 138 155 178 40

Tu; 1/12/10 50 156 0.48 138 156 177 38

W; 1/13/10 53 165 0.80 139 157 179 40

Th; 1/14/10 61 170 1.06 131 157 179 48

F; 1/15/10 49 168 0.70 140 160 185 45

In addition, a slight increase in travel time is observed on January 8, 2010, the day after the snow event 
occurred. This could be due to residual snow and ice remaining from the previous day’s snow event. 
A statistical box-plot distribution, which displays the quartiles (25th, 50th, and 75th percentiles) of 
the probe vehicle observations, is shown in Figure 4. Table 1 provides the summary statistics of the 
probe data used to construct the CFDs in Figure 3 and box-plot distribution in Figure 4, where “N” 
is equated to the number of probe vehicles.
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Figure 5: Southbound SR37 approach headways during Thursday snow (Jan. 7, 
2010) and clear weather (Jan. 14, 2010) conditions.

b) 25th, 50th, and 75th quartile box-plot distribution of a.m. peak 06:00 – 09:00  
approach headways (<=10 seconds).

a) Aggregate southbound a.m. peak 06:00 – 09:00 approach headways.
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Headway
The approach headway is the amount of time it takes successive vehicles to pass through a fixed point. 
Approach headway was measured at the eight approach detectors (I-01 SB, I-02 SB, I-03 SB, I-04 SB, 
I-01 NB, I-02 NB, I-03 NB, and I-04 NB) that are 405' back from the stop bar. The locations of these 
sensors are shown in Figure 1. These approach headways are represented graphically in Figure 5:

■■ Figure 5.a. shows the aggregated frequency of southbound headways observed during the a.m. 
peak (06:00 – 09:00) measured at the advanced detectors (Figure 1) for January 7, 2010 and January 
14, 2010.

■■ Figure 5.b. shows the statistical box-plot distribution of the southbound headways observed 
during the a.m. peak (06:00 – 09:00) measured at the advanced detectors (Figure 1) for January 7, 
2010 and January 14, 2010 for all headways less than or equal to 10 seconds.

Table 2 shows the summary statistics for Figure 5.b., where “N” equals the total number of vehicles 
observed. An aggregated total of 7,132 headway observations less than 10 seconds (shown as “Nh<10” 
in Table 2) were made on January 7, and 9,739 for January 14. It is clear from the graphs that there 
is an overall increase in the amount of headway observed for each link during the snow event. This 
increase appears to be greatest for southbound vehicles first entering the coordinated system at I-01.

Platoon Shift and Dispersion
A direct measure of the aggregated platoon flow profile during the southbound a.m. peak is presented 
in Figure 6.2 The increase in headway, along with the increase in travel speed shown in Figure 3, 
Figure 4, and Figure 5, supported the snow event platoon dispersion observed in Figure 6. 

■■ Figure 6.a. shows the aggregated platoon profile during the a.m. peak (06:00 – 09:00) snow event 
measured at the advanced detectors I-02 (Figure 1) for January 7, 2010 as referenced from the 
upstream BOG (I-01). Callout (i) represents the modal travel time for the coordinated platoon 
peak, while callout (ii) represents the modal travel time for the secondary platoon peak of vehicles 
entering the corridor from side streets.

Table 2: Arrival headway for each intersection a.m. peak 06:00–09:00 southbound 
during snow (Jan 7) and clear weather (Jan 14) conditions. (<= 10 seconds).

Intersection Direction

N

(Veh)
Nh<10s 
(Veh)

Mean 
Headway (s) S.D.

Percentiles (s)
Interquartile 

Range (s)25th 50th 75th

January 7, 2010 (Snow) AM Peak

I-01 SB 1434 769 3.05 1.15 2.2 3.1 4.0 1.8

I-02 SB 2983 2407 2.01 1.11 1.2 1.8 2.6 1.4

I-03 SB 2584 2145 2.15 1.02 1.4 2.0 2.7 1.3

I-04 SB 2331 1811 2.25 1.15 1.3 2.1 3.0 1.7

January 14, 2010 (Clear) AM Peak

I-01 SB 2386 1703 2.22 1.20 1.3 2.0 3.0 1.7

I-02 SB 3585 3007 1.67 1.10 0.9 1.4 2.2 1.3

I-03 SB 3006 2585 1.60 0.97 0.9 1.3 2.0 1.1

I-04 SB 2896 2444 1.65 1.02 0.9 1.4 2.1 1.2
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Figure 6: Observed platoon shift and dispersion at I-02 under snow and clear conditions.

b) Southbound arrival time at I-02 SB Detector referenced to I-01 SB BOG, a.m. peak 06:00 – 09:00 
 (clear weather on Thursday, Jan. 14, 2010).

a) Southbound arrival time at I-02 SB Detector referenced to I-01 SB BOG, a.m. peak 06:00 – 09:00  
(snow event on Thursday, Jan. 7, 2010).
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■■ Figure 6.b. shows the aggregated platoon profile during the a.m. peak (06:00 – 09:00) non-snow 
event measured at the advanced detectors I-02 (Figure 1) for January 7, 2010 as referenced from the 
upstream BOG (I-01). Callout (iii) represents the modal travel time for the coordinated platoon peak, 
while callout (iv) represents the modal travel time for the secondary platoon peak of vehicles entering 
the corridor from side streets.

■■ Based on the measured increase in link travel speed and approach headway, the expected modal arrival 
time of the platoon shifted resulting in the arrival 15 seconds later in Figure 6.a., callout (i) than in 
Figure 6.b., callout (iii). Also represented in the graph is a full-width half-max measurement (FWHM),

FWHMi = Me – Ms	 (1)

where Me is the end of the maximum width and Ms is the start of the maximum width measured at half 
the peak value. This measurement is generally used to measure the distribution of data with respect 
to its peak. Similarly, a platoon can be characterized as a peak in a distribution. The FWHM, in its 
simplest form as shown in Equation 1, was used to quantify the change in platoon dispersion due to 
snowfall. A summary table of these findings is found in Table 3. For each travel link, an increase in 
the platoon modal arrival time at the advance detector was measured. The FWHM increased on each 
of the travel links. These measures indicate that arrival times shifted (corresponding to longer travel 
times) and platoons were more dispersed during the January 7, 2010 a.m. peak snow event.

Coordination, Visualization, and Optimization

Visualization

Because the timing plan for the corridor was designed for clear-weather conditions with normal travel 
time speeds and approach headways, it is desirable to know whether this timing plan performed well 
under adverse weather conditions, particularly the offsets establishing the coordination pattern. 
This section examines the performance of the coordination pattern using the Purdue Coordination 
Diagram (PCD), a tool recently proposed for visualization of coordination events.4, 5

In Figure 7, eight PCDs for the southbound movements on SR 37 under snow (January 7) and clear 
(January 14) conditions are shown. In these graphs, each point represents a vehicle arrival. The vertical 

Table 3: Flow profile intersection arrival times for a.m. peak southbound 
referenced to upstream start of green.

(Weather) 
Date Link

Modal 
Travel Time 

(s)

Shift in 
Platoon Peak 
Travel Time 

(s)

Effective 
Link Speed 

(MPH)

Delta 
Speed 
(MPH)

Full width at 
Half-Max  
Me – Ms 

(s)

(SNOW) Th; 1/7/10

I-01 to I-02
65

15
24.3

7.3
50

(CLEAR) Th; 1/14/10 50 31.6 25

(SNOW) Th; 1/7/10

I-02 to I-03
75

25

23.0

11.6

65

(CLEAR) Th; 1/14/10 50 34.6 40

(SNOW) Th; 1/7/10

I-03 to I-04
115

30

21.6

7.6

75

(CLEAR) Th; 1/14/10 85 29.2 55
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position of the point shows the time in 
the cycle that the vehicle arrived, while the 
horizontal position is related to the time of 
day and hence the cycle in which the arrival 
occurred. The two horizontal lines indicate 
the average beginning of green (BOG) 
and end of green (EOG) times during the 
analysis period. The time between zero 
and BOG is when the coordinated phase 
is in red, while between BOG and EOG the 
phase is green. When vehicles are clustered 
together (callouts “A” and “B”), this is 
evidence of a platoon of vehicles arriving 
at an advance detector with respect to the 
BOG and EOG. In Figure 7, platoons are 
observed on each movement as inferred 
by the clusters of vehicle arrivals except for 
southbound at I-01, which has random 
arrivals. As shown in Figure 7, the majority 
of the platoons (callouts “A” and “B”) arrive 
on green, as compared to callout “E” where 
the majority of the platoon arrives on red.

By comparing the PCDs from the snow 
event (in Figure 7, left column of PCDs) 
to clear weather (right column), it is 
possible to observe changes in the travel 
times and dispersion of platoons. At I-03, 
for example, during clear conditions the 
platoon arrives almost entirely within the 
green band, with no platoons observed 
to arrive on red (callout “D”). During snow conditions at I-03, the considerably more spread out 
platoon begins to arrive later in the cycle; in fact, the platoon is cut off by the end of green, resulting 
in a portion of the platoon arriving on red (callout “C”). The changes to the platoons are even more 
pronounced at I-04. During clear conditions most of the southbound platoons are captured within 
the green band, with a minimal part of the platoon arriving on red (callout “F”). This was also 
observed at I-03 (callout “D”). However, during the snow event, the platoon arrival characteristics 
were almost totally inverted, with the majority of the platoon arriving during red (callout “E”). From 
these graphs, it is apparent that there are opportunities to adjust the coordinated signal offsets times 
to promote platoon arrivals on green and thus improve coordination during a snow event.

Offset Optimization

To determine whether a benefit could be obtained by changing the signal offsets, the data collected 
during the snow conditions were used to optimize the offsets. The optimization objective used was delay 
minimization. Delay was calculated using an input-output procedure that effectively estimated the area 
between the arrival and departure curves.19, 20 More specifically, the number of arrivals and number of 
departures (estimated by assuming saturation flow during green time) were tabulated for an average 
observed cycle, enabling an estimate of the queue length by numerically tracking the number of vehicles 
entering and exiting the system. Estimated delay is calculated by summing the estimated queue length 
over the cycle.

Figure 7: PCD comparison of a.m. peak 06:00 
– 09:00 during Thursday snow (Jan. 7, 2010) 
and clear weather (Jan. 14, 2010) conditions.
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Having thus calculated delay for the 
coordinated approaches in the system, it was 
possible to use this information to optimize 
the offsets. To summarize that process, 
the combination method was applied to 
high-resolution data using a customized 
algorithm for a chain of intersections on 
a two-way arterial.5 This algorithm finds 
the global optimum by executing a limited 
enumerative search on successive links in 
the system, while preserving previously 
optimized link flows by applying the 
additional adjustments to each additional 
intersection to all previously optimized 
intersections. More extensive details of the 
optimization algorithm and method for 
estimating delay based upon high-resolution 
data are described elsewhere.4, 5 Snow event 
offsets were optimized to minimize delay 
for the southbound movements only at 
I-02, I-03, and I-04, with vehicles arriving 
at I-01 being random (Figure 7). Offsets 
were also calculated to minimize delay for 
the entire system in the northbound and 
southbound direction. Vehicles arriving 
at I-04 northbound and I-01 southbound 
were found to be random and therefore not 
considered in the optimization algorithm.

The results of the optimization procedure 
are shown in Figure 8, with corresponding 
data in Table 4, where “N” is the number of 
total vehicles, and “Ng” is the total number 
of vehicles arriving on green. In Figure 8, the left column of PCDs represents the observed conditions 
during the snow event, while the right column shows the predicted platoon arrivals if the optimal offsets 
(southbound only) were implemented. The optimal offsets would cause arrivals at I-03 to be shifted 
several seconds earlier, preventing the tail end of the platoon (callout “C”) from being cut off with the 
prediction that the majority of the platoon would arrive in the green band (callout “Co”). At I-04, the 
predicted offset shift needed to minimize delay is associated with a similar shift. The platoon previously 
cut off at the end of green (callout “E”) is predicted to shift as shown by callout “Eo.” A more pronounced 
potential improvement to the coordination is seen at I-04, where the cluster called out by “E” is almost 
entirely shifted into the green band “Eo.”

Figure 9 shows the vehicle arrival patterns as cyclic flow profiles. In each plot, the black bars represent the 
probability of a vehicle arrival during a particular time in cycle. This is equivalent to a TRANSYT flow 
profile.2 The shaded region represents the probability of green for that time in cycle. The green bands 
are considerably wider at I-02 and I-03 because of the low demand for side-street phases, meaning that 
the coordinated phase receives considerable additional green time from gap outs of preceding phases. 
Nevertheless, delay is minimized at I-03 by shifting the platoon arrival (Figure 9, callout “A”) to an earlier 
part of the cycle (“Ao”). At I-04, the green band is relatively narrow due to high side-street demand. In this 
case, it is not possible to capture the entire platoon without increasing the coordinated phase split. 

Figure 8. Comparison of southbound 
SR37 PCDs for normal offset times and 
proposed optimal offsets to minimize 
delay for a.m. peak 06:00 – 09:00 during 
Thursday snow (Jan. 7, 2010) conditions.
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Nevertheless, there is a considerable 
opportunity to reduce delay by simply 
changing the offset to cause those 
vehicles to arrive at the beginning of 
green (Figure 9, callout “Co”) rather 
than the end of green (“C”). These 
potential improvements, which amount 
to a possible 26.7 percent decrease (3.0 
seconds per vehicle) in overall corridor 
delay for the southbound direction, are 
summarized in Table 4, where “N” is 
the number of total vehicles, and “Ng” 
is the total number of vehicles arriving 
on green.

The greatest opportunity to reduce delay 
in the southbound direction was found 
at I-04, where a reduction of 9.8 seconds 
per vehicle could be achieved. Optimizing 
only for the southbound direction did 
result in a northbound vehicle delay 
decrease of 2.2 percent. Alternatively, 
when applying the algorithm to minimize 
vehicle delay in both the northbound 

Table 4: Optimal offsets to minimize delay in the southbound direction in the a.m. 
peak (06:00 – 09:00) during a Thursday snow event (Jan. 7, 2010).

Optimized for SB Only (does not account for NB direction)

Links 
(Southbound)

N 
(Veh)

Proposed 
Offsets  

(s)

Ng (Veh) Link Delay (s/veh)

Before 
Optimization

After 
Optimization 

Before 
Optimization

After 
Optimization

Arrivals at I-0I 2133 0 796 796 25.1 25.1

I-01 to I-02 2981 108 2405 2384 0.5 0.2

I-02 to I-03 2582 23 1938 2056 2.8 0.1

I-03 to I-04 2331 57 976 1274 21.6 11.8

SB System 10027 6115 6510 11.2 8.2

SB Percent Change 6.9 percent -26.7 percent

Links 
(Southbound)

N 
(Veh)

Proposed 
Offsets  

(s)

Ng (Veh) Link Delay (s/veh)

Before 
Optimization

After 
Optimization 

Before 
Optimization

After 
Optimization

I-02 to I-0I 756 0 363 319 7.9 25.1

I-02 to I-02 1475 108 816 762 4.4 0.2

I-04 to I-03 1486 23 1174 967 0.1 0.1

Arrivals at I-04 1252 57 425 425 13.2 11.8

NB System 4969 2778 2473 5.9 5.8

NB Percent Change -11.3 percent -2.2 percent

SB and NB Total System Percent Change 1.0 percent -22.1 percent

Figure 9: Comparison of southbound SR37 flow 
profiles for normal offset times and proposed 
optimal offsets to minimize delay for a.m. peak 
06:00 – 09:00 during Thursday snow (Jan. 7, 
2010) conditions.
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and southbound directions, the results shown in Table 5 indicate a possible delay reduction of 11.7 
percent northbound and 25.9 percent southbound. When analyzing the overall corridor system 
delay, the results indicate a potential 22.1 percent reduction in total vehicle delay when optimizing in 
the southbound direction as opposed to considering northbound and southbound, which resulted 
in a potential reduction of 23.1 percent. 

Conclusions and Recommendations
This paper demonstrated a set of measures to directly quantify traffic flow characteristics along an 
actuated-coordinated arterial. The system characteristics were measured using a combination of 
Bluetooth® probe data and high-resolution data (0.1 second) traffic signal controllers with logging 
capability. This data was used to characterize the following:

■■ Distributions of travel time along the corridor;

■■ Approach headways at the advance detectors; and

■■ Formation and dispersion of platoons referenced from the upstream traffic signal beginning of green.

These measures were made on a 1.6 mile (2.6 km), four intersection actuated-coordinated arterial to 
compare a snow event (Thursday, January 7, 2010) and clear weather (Thursday, January 14, 2010) for 
the southbound a.m. peak (06:00 – 09:00). The continuous Bluetooth® MAC address matching was 
used to identify increases in travel time related to adverse winter weather conditions. A southbound 
travel time increase of 83 seconds was measured during the snow event. This increase in corridor 

Table 5: Optimal offsets to minimize delay for north and southbound direction in 
the a.m. peak (06:00 - 09:00) during a Thursday snow (Jan. 7, 2010).

Optimized for SB and NB

Links 
(Southbound)

N 
(Veh)

Proposed 
Offsets  

(s)

Ng (Veh) Link Delay (s/veh)

Before 
Optimization

After 
Optimization 

Before 
Optimization

After 
Optimization

Arrivals at I-0I 2133 0 796 796 25.1 25.1

I-01 to I-02 2981 112 2405 2400 0.5 0.3

I-02 to I-03 2582 35 1938 1913 2.8 0.4

I-03 to I-04 2331 67 976 1292 21.6 11.8

System 10027 6115 6401 11.2 8.3

SB System Percent Change 4.6 percent -25.9 percent

Links 
(Northbound)

N 
(Veh)

Proposed 
Offsets  

(s)

Ng (Veh) Link Delay (s/veh)

Before 
Optimization

After 
Optimization 

Before 
Optimization

After 
Optimization

I-02 to I-0I 756 0 363 340 7.9 8.1

I-02 to I-02 1475 112 816 833 4.4 1.3

I-04 to I-03 1486 35 1174 994 0.1 0.3

Arrivals at I-04 1252 67 425 386 13.2 13.9

System 4969 2778 2553 5.9 5.2

NB System Percent Change -8.1 percent -11.7 percent

SB and NB Total System Percent Change 0.7 percent -23.1 percent
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travel time resulted in a measured increase (positive shift) of the modal platoon travel times by 15 
seconds for I-02, 25 seconds for I-03, and 30 seconds for I-04. Platoon dispersion was quantified by 
calculating the full width at half max (FWHM) of the peak value in the platoon profiles. FWHM 
was found to increase by 25 seconds, 25 seconds, and 20 seconds respectively at I-02, I-03, and I-04, 
corresponding to more dispersed platoons. Increased platoon dispersion was further substantiated 
by measuring the median approach headway at the advance detectors, which increased from 1.4 to 
2.0 seconds for the system. The PCD visually demonstrated both the shift and dispersion of the 
southbound a.m. peak platoons at each intersection during the snow event. 

This paper outlined a set of metrics that can be measured and can provide a visual queue to determine 
platoon presence, if coordination is necessary during inclement weather conditions, and can determine 
whether there are opportunities to improve operations by adjusting offsets to account for winter 
weather-related increases in travel time. For this case study, running in coordination with adjusted 
offset times appears to be the best option. This recommendation is derived from the optimization of 
the offsets through the system resulting in predicted improved traffic flow. Based on the optimization 
algorithms developed,5 an overall system delay reduction of 32,832 seconds (23.1 percent) can be 
obtained by minimizing delay for the northbound and southbound directions; a 22.1 percent reduction 
is possible from just minimizing southbound delay. Previous research had predicted a similar total 
delay reduction of 23 percent.6 Focusing on the southbound direction, a greater reduction in the 
southbound delay of 30,784 seconds (26.7 percent) or approximately 3.0 seconds per vehicle could be 
achieved. Based on this finding, it is recommended that the corridor continue to run in coordination 
with alternative offsets programmed that minimize delay in the southbound direction. These offsets 
are based on the 70/30 directional split heavily in favor of southbound and can be enabled when a 
winter weather event is eminent during the weekday a.m. peak. 

This work demonstrates opportunities for significant improvements in arterials during winter 
conditions through the changes to the offsets times. Further studies will need to be conducted to 
determine if changes to cycle lengths, split times, and gap acceptance are needed in addition to the 
offsets to yield additional improvements in the coordination through the system during a snow 
event. Although clearance intervals had been noted as an important parameter for improving winter 
timing66 this research has focused on coordination plans. 
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